JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (2): 381-390.
• Reviews • Previous Articles Next Articles
HU Xueying1, DONG Hailiang1, JIA Zhigang1, ZHANG Aiqin2, LIANG Jian3, XU Bingshe1,4
Received:
2020-11-17
Published:
2021-03-24
CLC Number:
HU Xueying, DONG Hailiang, JIA Zhigang, ZHANG Aiqin, LIANG Jian, XU Bingshe. Research Progress of GaAs Based 980 nm High Power Semiconductor Lasers[J]. Journal of Synthetic Crystals, 2021, 50(2): 381-390.
[1] 甘啟俊,姜本学,张攀德,等.高平均功率固体激光器研究进展[J].激光与光电子学进展,2017,54(1):010003. GAN Q J, JIANG B X, ZHANG P D, et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010003(in Chinese). [2] 李志明,辛建国.射频激励金属板条波导CO2激光器的功率输出特性[J].红外与激光工程,2008,37(2):230-232. LI Z M, XIN J G. Power output characteristic of RF excited all metal slab waveguide CO2 laser[J]. Infrared and Laser Engineering, 2008, 37(2): 230-232(in Chinese). [3] 杨卫红,张 雪,李建东.2 kW射频板条CO2激光器电极表面膜特性研究[J].应用激光,2019,39(1):136-142. YANG W H, ZHANG X, LI J D. Film characteristics of electrode surface for 2 kW RF slab CO2 laser[J]. Applied Laser, 2019, 39(1): 136-142(in Chinese). [4] 马骁宇,张娜玲,仲 莉,等.高功率半导体激光泵浦源研究进展[J].强激光与粒子束,2020,32(12):120-129. MA X Y, ZHANG N L, ZHONG L, et al. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32(12): 120-129(in Chinese). [5] 张 建.GaAs基近红外半导体激光器的设计、生长和制备研究[D].长春:中国科学院长春光学精密机械与物理研究所,2013:7-8. ZHANG J. Study on the design, growth and preparation of GaAs based near infrared semiconductor lasers[D].Changchun:Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences, 2013:7-8(in Chinese). [6] WELCH D F, PLANO W, MAJOR J, et al. High-power, 980-nm, single-mode laser diodes[C]//Optical Fiber Communication. San Diego, California. Washington, D.C.: OSA, 1991. [7] SUMIDA D S, FAN T Y. A 50 mJ per pulse transversely diode-pumped Yb∶YAG laser at room temperature[C]//Proceedings of LEOS'94. October 31 - November 3, 1994, Boston, MA, USA. IEEE, 1994: 419-420. [8] CHILLA J L A, BUTTERWORTH S D, ZEITSCHEL A, et al. High-power optically pumped semiconductor lasers[C]//Proc SPIE 5332, Solid State Lasers XIII: Technology and Devices, 2004, 5332: 143-150. [9] 袁庆贺,井红旗,张秋月,等.砷化镓基近红外大功率半导体激光器的发展及应用[J].激光与光电子学进展,2019,56(4):040003. YUAN Q H, JING H Q, ZHANG Q Y, et al. Development and applications of GaAs-based near-infrared high power semiconductor lasers[J]. Laser & Optoelectronics Progress, 2019, 56(4): 040003(in Chinese). [10] XU B S, QU K, WANG Z Y, et al. Investigation of photoelectric performance of laser diode by regulation of p-waveguide layer thickness[J]. Optik, 2020, 200: 163458. [11] 宁永强,陈泳屹,张 俊,等.大功率半导体激光器发展及相关技术概述[J/OL].光学学报:1-18[2020-12-19].http://kns.cnki.net/kcms/detail/31.1252.O4.20200904.1720.012.html. NING Y Q, CHEN Y Y, ZHANG J, et al. A brief review of the development and the techniques for high power semiconductor lasers[J/OL].Acta Optica Sinica:1-18[2020-12-19]. http://kns.cnki.net/kcms/detail/31.1252.O4.20200904.1720.012.html(in Chinese). [12] KE K L, CHUA S J, FAN W J. Low threshold current density and high-quantum-efficiency 980-nm cw QW laser[C]//Proc SPIE 4227, Advanced Microelectronic Processing Techniques, 2000, 4227: 163-168. [13] GAO X, BO B X, WANG L, et al. 980-nm high-power strained quantum well laser array fabricated by MBE[C]//Proc SPIE 5624, Semiconductor and Organic Optoelectronic Materials and Devices, 2005, 5624: 636-641. [14] 袁庆贺,井红旗,仲 莉,等.高功率高可靠性9XX nm激光二极管[J].中国激光,2020,47(4):0401006. YUAN Q H, JING H Q, ZHONG L, et al. High-power and high-reliability 9XX-nm laser diode[J]. Chinese Journal of Lasers, 2020, 47(4): 0401006(in Chinese). [15] 汤 瑜,曹春芳,赵旭熠,等.InGaAs/GaAs/InGaP量子阱激光器的激光单模特性研究[J].激光与光电子学进展,2019,56(13):131402. TANG Y, CAO C F, ZHAO X Y, et al. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131402(in Chinese). [16] 王 颖.Ⅲ-Ⅴ族半导体量子点和量子阱复合结构纳米材料光学特性研究[D].北京:北京交通大学,2019. WANG Y. Optical properties of Ⅲ-Ⅴ compound semiconductor quantum dot and quantum well hybrid nanostructures[D]. Beijing: Beijing Jiaotong University, 2019(in Chinese). [17] KORNYSHOV G O, PAYUSOV A S, GORDEEV N Y, et al. High-power 0.98 μm range diode lasers based on InGaAs/GaAs quantum well-dot active region[J]. Journal of Physics: Conference Series, 2019, 1400: 066045. [18] SU W Y S, SANTIAGO S R M S, CHIANG HSIEH C C, et al. Enhanced photoluminescence of InGaAs/AlGaAs quantum well with tungsten disulfide quantum dots[J]. Nanotechnology, 2020, 31(22): 225703. [19] 张继宇.9XX nm器件电流非注入、透明无吸收窗口的设计与制作[D].长春:长春理工大学,2019. ZHANG J Y. Design and fabrication of current non-injection, transparent non-absorptive window for 9XX nm devices[D]. Changchun: Changchun University of Science and Technology, 2019(in Chinese). [20] XU Z T, YANG G W, YIN T, et al. High-power 980-nm InGaAs/GaAs/AlGaAs window structure lasers fabricated by impurity-free vacancy diffusion[C]//Proc SPIE 3547, Semiconductor Lasers III, 1998, 3547: 54-60. [21] ZHOU L, GAO X, XU L Y, et al. InGaAs/GaAsP/GaInP quantum well lasers with window structure fabricated by impurity free vacancy disordering[J]. Solid-State Electronics, 2013, 89: 81-84. [22] LIU C C, LIN N, XIONG C, et al. Intermixing in InGaAs/AlGaAs quantum well structures induced by the interdiffusion of Si impurities[J]. Chinese Optics, 2020, 13(1): 203-216. [23] SAGAWA M, HIRAMOTO K, TOYONAKA T, et al. High power COD-free operation of 0.98 μm InGaAs/GaAs/InGaP lasers with noninjection regions near the facets[J]. Electronics Letters, 1994, 30(17): 1410-1411. [24] 刘 斌,张敬明,马骁宇,等.980 nm脊型波导激光器腔面非注入区的研究[J].激光与红外,2003,33(2):109-111. LIU B, ZHANG J M, MA X Y, et al. The investigation of 980 nm ridge waveguide lasers with current non-injection regions by proton implantation[J]. Laser & Infrared, 2003, 33(2): 109-111(in Chinese). [25] 张 松,刘素娟,崔碧峰,等.新型大功率LD非注入区窗口结构研究[J].半导体光电,2014,35(1):26-29. ZHANG S, LIU S J, CUI B F, et al. A novel structure of non-injection regions of high-power laser diodes[J]. Semiconductor Optoelectronics, 2014, 35(1): 26-29(in Chinese). [26] ARSLAN S, GÜNDOAGˇDU S, DEMIR A, et al. Facet cooling in high-power InGaAs/AlGaAs lasers[J]. IEEE Photonics Technology Letters, 2019, 31(1): 94-97. [27] LINDSTROM C, TIHANYI P. Cleaning of GaAs surfaces with low-damage effects using ion-beam milling[J]. IEEE Transactions on Electron Devices, 1983, 30(6): 711-713. [28] 程东明,刘 云,王立军.表面钝化技术对光学灾变的影响的研究[J].激光技术,2003,27(1):14-15. CHENG D M, LIU Y, WANG L J. Research of influence of surface passivation on catastrophic optical damage[J]. Laser Technology, 2003, 27(1): 14-15(in Chinese). [29] 王 鑫,朱凌妮,赵懿昊,等.915 nm半导体激光器新型腔面钝化工艺[J].红外与激光工程,2019,48(1):0105002. WANG X, ZHU L N, ZHAO Y H, et al. 915 nm semiconductor laser new type facet passivation technology[J]. Infrared and Laser Engineering, 2019, 48(1): 0105002(in Chinese). [30] 舒雄文,徐 晨,徐遵图,等.808 nm大功率半导体激光器腔面光学膜工艺[J].半导体学报,2005,26(3):571-575. SHU X W, XU C, XU Z T, et al. Facet coatings for 808 nm high-power semiconductor laser diode[J]. Chinese Journal of Semiconductors, 2005, 26(3): 571-575(in Chinese). [31] 刘 磊.980 nm半导体激光器腔面膜研究[D].长春:长春理工大学,2013. LIU L. The study on thin film of980 nm semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2013(in Chinese). [32] 许留洋.高功率半导体激光器腔面钝化及器件特性研究[D].长春:长春理工大学,2016. XU L Y. Research on cavity facet passivation and device characteristics of high power semiconductor laser diodes[D]. Changchun: Changchun University of Science and Technology, 2016(in Chinese). [33] 崔碧峰,程 瑾,郝 帅,等.不同应力增透膜对半导体激光器性能的影响[J].半导体光电,2020,41(1):77-79+84. CUI B F, CHENG J, HAO S, et al. Effect of different facet coating stress on the performance of laser diodes[J]. Semiconductor Optoelectronics, 2020, 41(1): 77-79+84(in Chinese). [34] 闫宏宇.高功率半导体激光器的光束特性评价[D].长春:长春理工大学,2019. YAN H Y. Evaluation of beam characteristics of high power semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2019(in Chinese). [35] TSANG W T, OLSSON N A. New large optical cavity laser with distributed active layers[J]. Applied Physics Letters, 1983, 42(10): 850-852. [36] 胡理科,祁 琼,熊 聪,等.大功率小垂直发散角980 nm量子阱激光器[J].半导体光电,2010,31(5):677-681+686. HU L K, QI Q, XIONG C, et al. High-power 980 nm quantum-well laser diode with a small vertical divergence angle[J]. Semiconductor Optoelectronics, 2010, 31(5): 677-681+686(in Chinese). [37] 李建军,崔碧峰,邓 军,等.非对称超大光腔980 nm大功率半导体激光器[J].中国激光,2013,40(11):1102011. LI J J, CUI B F, DENG J, et al. 980 nm high power semiconductor laser with asymmetric super large optical cavity[J]. Chinese Journal of Lasers, 2013, 40(11): 1102011(in Chinese). [38] SERIN A, GORDEEV N, PAYUSOV A, et al. Edge-emitting lasers based on coupled large optical cavity with high beam stability[J]. Journal of Physics: Conference Series, 2017, 929: 012077. [39] ZHAO S, QI A, WANG M, et al. High-power high-brightness 980 nm lasers with >50% wall-plug efficiency based on asymmetric super large optical cavity[J]. Optics Express, 2018, 26(3): 3518-3526. [40] MAXIMOV M V, SHERNYAKOV Y M, NOVIKOV I I, et al. Narrow vertical beam divergence laser diode based on longitudinal photonic band crystal waveguide[J]. Electronics Letters, 2003, 39(24): 1729-1731. [41] NOVIKOV I I, GORDEEV N Y, SHERNYAKOV Y M, et al. High-power single mode (>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence[J]. Applied Physics Letters, 2008, 92(10): 103515. [42] 汪丽杰.布拉格反射波导光子晶体激光器的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2013. WANG L J. Bragg reflection waveguide photonic crystal laser[D]. Changchun: Changchun Institute of Optics, Precision Machinery and Physics, Chinese Academy of Sciences, 2013(in Chinese). [43] YOSHIDA M, DE ZOYSA M, ISHIZAKI K, et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J]. Nature Materials, 2019, 18(2): 121-128. [44] GU L, YUAN H B, LI L, et al. Structure design of InGaAs quantum well laser with mode expansion layer[J]. IOP Conference Series: Materials Science and Engineering, 2019, 563: 032011. [45] YEN S T, LEE C P. Theoretical investigation on semiconductor lasers with passive waveguides[J]. IEEE Journal of Quantum Electronics, 1996, 32(1): 4-13. [46] 王晓燕,赵 润,沈 牧.小发散角高功率半导体激光器研究[J].红外与激光工程,2006,35(3):302-304+335. WANG X Y, ZHAO R, SHEN M. High-power semiconductor lasers with small divergence[J]. Infrared and Laser Engineering, 2006, 35(3): 302-304+335(in Chinese). [47] 曾丽娜,李 林,李再金,等.基于模式扩展层结构的980 nm小发散角半导体激光器模拟研究[J].现代物理,2018,8(6):265-270. ZENG L N, LI L, LI Z J, et al. Study on simulation of 980 nm small far field divergence semiconductor lasers based on mode expansion layers[J].Modern Physics, 2018, 8(6): 265-270(in Chinese). [48] JEON H, VERDIELL J M, ZIARI M, et al. High-power low-divergence semiconductor lasers for GaAs-based 980-nm and InP-based 1550-nm applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(6): 1344-1350. [49] WENZEL H, KLEHR A, BRAUN M, et al. High-power 980-nm DFB diode lasers with a small vertical farfield divergence[C]//CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005. June 12-17, 2005, Munich, Germany. IEEE, 2005: 110. [50] CRUMP P, SCHULTZ C M, WENZEL H, et al. Reliable operation of 976 nm high power DFB broad area diode lasers with over 60% power conversion efficiency[C]//SPIE OPTO. Proc SPIE 7953, Novel in-Plane Semiconductor Lasers X, San Francisco, California, USA. 2011, 7953: 79531G. [51] DECKER J, FRICKE J, MAADORF A, et al. Non-uniform DFB-surface-etched gratings for enhanced performance high power, high brightness broad area lasers[C]//SPIE LASE. Proc SPIE 10086, High-Power Diode Laser Technology XV, San Francisco, California, USA. 2017, 1008: 100860R. [52] 邱 橙,陈泳屹,高 峰,等.一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制[J].物理学报,2019,68(16):218-227. QIU C, CHEN Y Y, GAO F, et al. Design of a multimode interference waveguide semiconductor laser combining gain coupled distributed feedback grating[J]. Acta Physica Sinica, 2019, 68(16): 218-227(in Chinese). [53] O'BRIEN S, PARKE R, WELCH D F, et al. High power singlemode GaInAs lasers with distributed Bragg reflectors[J]. Electronics Letters, 1992, 28(13): 1272. [54] FIEBIG C, BLUME G, UEBERNICKEL M, et al. High-power DBR-tapered laser at 980 nm for single-path second harmonic generation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 978-983. [55] REDDY U. Wide stripe single and dual wavelength mode semiconductor diode lasers.Illinois: University of Illinois at Urbana-Champaign, 2011. [56] PAOLETTI R, CODATO S, CORIASSO C, et al. High power wavelength stabilized multiemitter semiconductor laser module using highly manufacturable DBR diode lasers[C]//SPIE LASE. Proc SPIE 11262, High-Power Diode Laser Technology XVIII, San Francisco, California, USA. 2020, 1126: 112620K. [57] GEELS R S, COLDREN L A. Submilliamp threshold vertical-cavity laser diodes[J]. Applied Physics Letters, 1990, 57(16): 1605-1607. [58] MILLER M, GRABHERR M, JAGER R, et al. High-power VCSEL arrays for emission in the watt regime at room temperature[J]. IEEE Photonics Technology Letters, 2001, 13(3): 173-175. [59] SEURIN J F, GHOSH C L, KHALFIN V, et al. High-power vertical-cavity surface-emitting arrays[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6876, High-Power Diode Laser Technology and Applications VI, San Jose, California, USA. 2008, 6876: 68760D. [60] WARREN M E, PODVA D, DACHA P, et al. Low-divergence high-power VCSEL arrays for lidar application[C]//SPIE OPTO. Proc SPIE 10552, Vertical-Cavity Surface-Emitting Lasers XXII, San Francisco, California, USA. 2018, 1055: 105520E. [61] CZYSZANOWSKI T, GEBSKI M, DEMS M, et al. Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system[J]. Scientific Reports, 2017, 7: 40348. [62] 张继业,张建伟,曾玉刚,等.高功率垂直外腔面发射半导体激光器增益设计及制备[J].物理学报,2020,69(5): 20191787. ZHANG J Y, ZHANG J W, ZENG Y G, et al. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication[J]. Acta Physica Sinica, 2020, 69(5): 20191787(in Chinese). [63] 张天杰.976 nm大功率VCSEL的结构计算与氧化工艺研究[D].西安:西安理工大学,2018. ZHANG T J. Study on the structural calculation and oxidation process of 976 nm high power VCSEL[D]. Xi′an: Xi′an University of Technology, 2018(in Chinese). [64] DENG Z, SHEN J, GONG W C, et al. Temperature distribution and thermal resistance analysis of high-power laser diode arrays[J]. International Journal of Heat and Mass Transfer, 2019, 134: 41-50. [65] YIN S, TSENG K J, ZHAO J Y. Design of AlN-based micro-channel heat sink in direct bond copper for power electronics packaging[J]. Applied Thermal Engineering, 2013, 52(1): 120-129. [66] 房俊宇,石琳琳,张 贺,等.石墨片作辅助热沉的高功率半导体激光器热传导特性[J].发光学报,2019,40(7):907-914. FANG J Y, SHI L L, ZHANG H, et al. Heat transfer characteristics of high power semiconductor laser with graphite sheet as auxiliary heat sink[J]. Chinese Journal of Luminescence, 2019, 40(7): 907-914(in Chinese). [67] WEISS S, ZAKEL E, REICHL H. Mounting of high power laser diodes on diamond heatsinks[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 1996, 19(1): 46-53. [68] 潘存海,李俊岳,花吉珍,等.用于半导体激光器热沉的金刚石膜/Ti/Ni/Au金属化体系的研究[J].半导体学报,2003,24(7):737-742. PAN C H, LI J Y, HUA J Z, et al. Investigation of diamond/Ti/Ni/Au metallization scheme applied in semiconductor lasers for thermal management[J]. Chinese Journal of Semiconductors, 2003, 24(7): 737-742(in Chinese). [69] PARASHCHUK V V. On efficiency of power diode lasers using diamond heat sinks[J]. Materials Today: Proceedings, 2016, 3: S165-S170. [70] 王鲁华.铜/金刚石复合材料的界面结构与导热性能[D].北京:北京科技大学,2019. WANG L H. Interfacial structure and thermal conductivity of Cu/diamond composites[D]. Beijing: University of Science and Technology Beijing, 2019(in Chinese). [71] 刘 云.半导体微腔激光器散热分析及其工艺制备[D].长春:长春理工大学,2019:9-11. LIU Y. Heat dissipation analysis and technology preparation of semiconductor micro-cavity laser[D]. Changchun: Changchun University of Science and Technology, 2019: 9-11(in Chinese). [72] 张彦鑫,王警卫,吴 迪,等.一种新型大功率单发射腔半导体激光器及其特性[J].中国激光,2010,37(5):1186-1191. ZHANG Y X, WANG J W, WU D, et al. A new package structure for high power single emitter semiconductor laser and performance analysis[J]. Chinese Journal of Lasers, 2010, 37(5): 1186-1191(in Chinese). [73] BEZOTOSNYI V V, KROKHIN O N, OLESHCHENKO V A, et al. 980 nm, 15 W CW laser diodes on F-mount-type heat sinks[J]. Quantum Electronics, 2015, 45(12): 1088-1090. [74] WU D H, ZAH C E, LIU X S. Thermal design for the package of high-power single-emitter laser diodes[J]. Optics & Laser Technology, 2020, 129: 106266. [75] MUNDINGER D, BEACH R, BENETT W, et al. Demonstration of high-performance silicon microchannel heat exchangers for laser diode array cooling[J]. Applied Physics Letters, 1988, 53(12): 1030-1032. [76] 刘 云,廖新胜,秦 丽,等.大功率半导体激光器叠层无氧铜微通道热沉[J].发光学报,2005,26(1):113-118. LIU Y, LIAO X S, QIN L, et al. Oxygen-free copper microchannel heat sink of high power semiconductor laser[J]. Chinese Journal of Luminescence, 2005, 26(1): 113-118(in Chinese). [77] 范嗣强.大功率激光二极管阵列节流微蒸发制冷热沉的原理与实验研究[D].重庆:重庆大学,2015. FAN S Q. Study on principle and experiment of micro-evaporation throttling cooling heat sink of high power laser diode array[D]. Chongqing: Chongqing University, 2015(in Chinese). [78] DENG Z, SHEN J, DAI W, et al. Experimental study on cooling of high-power laser diode arrays using hybrid microchannel and slot jet array heat sink[J]. Applied Thermal Engineering, 2019, 162: 114242. [79] John V, Feler R. Progress in the development of active heat sink for high-power laser diodes.SPIE-International Society of Optical Engineering, 2010, 7583: 75830K. |
[1] | CHENG Youliang, DU Huibin, ZHANG Zhongbao, WANG Kai. Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1629-1639. |
[2] | ZHAO Ya, ZHUANG Zhong, WEI Mengyuan, JIANG Qingsong, YANG Xiao, XUN Wei, LIU Yuhao. Effect of Sulfur-Rich Precursor Solution on Photovoltaic Performance of CuPbSbS3 Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1640-1647. |
[3] | ZHANG Bo, SONG Zhicheng, NI Yufeng, WEI Kaifeng. Boron Doping Technology for the Front Polysilicon Layer of Full TOPCon Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 329-335. |
[4] | LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 38-50. |
[5] | YANG Lu, SONG Zhicheng, NI Yufeng, ZHANG Ting, WEI Kaifeng, RUAN Miao, SHI Huijun, ZHENG Leijie. Process Study on Selective Emitter of TOPCon Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 138-144. |
[6] | LIANG Caian, DONG Hailiang, JIA Zhigang, JIA Wei, LIANG Jian, XU Bingshe. Simulation and Performance of 1 060 nm Antimonide Strain-Compensated Active Laser Diode [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1624-1634. |
[7] | HOU Yanyu, DONG Hailiang, JIA Zhigang, JIA Wei, LIANG Jian, XU Bingshe. Effect of Composition Step-Graded InGaN Barriers on Photoelectric Performance of Green Laser Diode [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1386-1393. |
[8] | YU Na, XU Congyan, LI Qiulian, CHEN Yufei, ZHAO Yonggang, ZHOU Zhineng, YANG Xin, WANG Shurong. Effect of a Small Amount of Ge on the Properties of Cu2ZnSnSe4 Thin Films and Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 460-466. |
[9] | WU Zhonghang, SUN Bin, HUANG Gang, QU Qian, TANG Yiwen, SUN Jiuai. Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 196-207. |
[10] | LU Hui, WEN Qian, WANG Jiaqi, SHA Simiao, WANG Kang, SUN Weidong, WU Jiandong, MA Jinfu, HOU Chunping, SHENG Zhilin, FENG Weiguang. Research Progress of Perovskite Solar Cells Based on ZnO as Electron Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 208-219. |
[11] | WANG Chuankun, LU Chengwei, OUYANG Yujie, ZHANG Shengjun, HAO Yanling. Optimization and Numerical Simulation of Sn-Based CH3NH3SnI3 Perovskite Solar Cell [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(11): 2076-2084. |
[12] | HONG Lun, DU Huiwei, LI Mingyuan, WANG Jiangying, ZHANG Jingji, ZONG Quan, ZHANG Xinyu, ZHANG Bike, JIN Jingsheng. Recovering and Efficiency Improvement on Potential Induced and Damp Heat Degradation of P-PERC Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1378-1386. |
[13] | LU Hui, LI Tong, WEN Qian, SHA Simiao, MA Simin, XUE Xiaoyang, WANG Kang, SHENG Zhilin, MA Jinfu. Effect of Salicylic Acid Additive on the Properties of All-Inorganic Tin-Lead Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1387-1395. |
[14] | ZHANG Bo, LIN Mingyu, SUN Shuyan, LUO Xinze. SiW12 Cooperating with CsPbI3 to Improve the Photoelectric Conversion Efficiency of TiO2 Nanotubes [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1034-1041. |
[15] | XIAO Jianmin, YUAN Jiren, WANG Peng, DENG Xinhua, HUANG Haibin, ZHOU Lang. Simulation of Lead-Based Halide Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1051-1058. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||