JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (2): 397-406.
• Reviews • Previous Articles
YANG Yun, SHI Xinyue, WU Hongya, QIN Shengjian, ZHANG Guanglei
Received:
2020-10-21
Published:
2021-03-24
CLC Number:
YANG Yun, SHI Xinyue, WU Hongya, QIN Shengjian, ZHANG Guanglei. Research Progress in Molecular Dynamics Simulation of SiO2 Aerogels[J]. Journal of Synthetic Crystals, 2021, 50(2): 397-406.
[1] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741. [2] KISTLER S S. Coherent expanded-aerogels[J]. The Journal of Physical Chemistry, 1932, 36(1): 52-64. [3] CANTIN M, CASSE M, KOCH L, et al. Silica aerogels used as Cherenkov radiators[J]. Nuclear Instruments and Methods, 1974, 118(1): 177-182. [4] HRUBESH L W. Aerogel applications[J]. Journal of Non-Crystalline Solids, 1998, 225: 335-342. [5] JONES S M. Aerogel: Space exploration applications[J]. Journal of Sol-Gel Science and Technology, 2006, 40(2/3): 351-357. [6] BURCHELL M J, GRAHAM G, KEARSLEY A. Cosmic dust collection in aerogel[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 385-418. [7] TABATA M, IMAI E, YANO H, et al. Design of a silica-aerogel-based cosmic dust collector for the tanpopo mission aboard the international space station[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2014, 12(ists29): Pk_29-Pk_34. [8] GOETZBERGER A, WITTWER V. Translucent insulation for passive solar energy utilization in buildings[C]//Aerogels, 1986. DOI:10.1007/978-3-642-93313-4_10. [9] RUBIN M, LAMPERT C M. Transparent silica aerogels for window insulation[J]. Solar Energy Materials, 1983, 7(4): 393-400. [10] FESMIRE J E. Aerogel insulation systems for space launch applications[J]. Cryogenics, 2006, 46(2/3): 111-117. [11] NG T Y, YEO J J, LIU Z S. A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing[J]. Journal of Non-Crystalline Solids, 2012, 358(11): 1350-1355. [12] YEO J J, LIU Z S, NG T Y. Enhanced thermal characterization of silica aerogels through molecular dynamics simulation[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7): 075004. [13] RIVAS MURILLO J S, BACHLECHNER M E, CAMPO F A, et al. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2010, 356(25/26/27): 1325-1331. [14] LEI J C, LIU Z S, YEO J, et al. Determination of the Young′s modulus of silica aerogels-an analytical-numerical approach[J]. Soft Matter, 2013, 9(47): 11367. [15] FERREIRO-RANGEL C A, GELB L D. Computational study of uniaxial deformations in silica aerogel using a coarse-grained model[J]. The Journal of Physical Chemistry B, 2015, 119(27): 8640-8650. [16] PATIL S. Nanoindentation of graphene-reinforced silica aerogel: a molecular dynamics study[J]. Molecules, 2019, 24(7): 1336. [17] TILLOTSON T M, HRUBESH L W. Transparent ultralow-density silica aerogels prepared by a two-step Sol-gel process[J]. Journal of Non-Crystalline Solids, 1992, 145: 44-50. [18] CROSS J, GOSWIN R, GERLACH R, et al. Mechanical properties of SiO2 - aerogels[J]. Le Journal De Physique Colloques, 1989, 24(C4): C4-185-C4-190. [19] LEMAY J D, TILLOTSON T M, HRUBESH L W, et al. Microstructural dependence of aerogel mechanical properties[J]. MRS Proceedings, 1990, 180: 321. [20] WOIGNIER T, PELOUS J, PHALIPPOU J, et al. Elastic properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 1987, 95/96: 1197-1202. [21] WEI G S, LIU Y S, DU X Z, et al. Gaseous conductivity study on silica aerogel and its composite insulation materials[J]. Journal of Heat Transfer, 2012, 134(4): 041301. [22] EBERT H P. Thermal properties of aerogels[M]//Aerogels Handbook. New York: Springer New York, 2011: 537-564. [23] FRICKE J. Aerogels: highly tenuous solids with fascinating properties[J]. Journal of Non-Crystalline Solids, 1988, 100(1/2/3): 169-173. [24] VAN BEEST B W, KRAMER G J, VAN SANTEN R A. Force fields for silicas and aluminophosphates based on ab initio calculations[J]. Physical Review Letters, 1990, 64(16): 1955-1958. [25] KRAMER G J, FARRAGHER N P, VAN BEEST B W, et al. Interatomic force fields for silicas, aluminophosphates, and zeolites: derivation based on ab initio calculations[J]. Phys Rev B Condens Matter, 1991, 43(6): 5068-5080. [26] TSUNEYUKI S, TSUKADA M, AOKI H, et al. First-principles interatomic potential of silica applied to molecular dynamics[J]. Physical Review Letters, 1988, 61(7): 869-872. [27] GUISSANI Y, GUILLOT B. A numerical investigation of the liquid-vapor coexistence curve of silica[J]. The Journal of Chemical Physics, 1996, 104(19): 7633-7644. [28] CARRÉ A, BERTHIER L, HORBACH J, et al. Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study[J]. The Journal of Chemical Physics, 2007, 127(11): 114512. [29] VASHISHTA P, KALIA R K, RINO J P, et al. Interaction potential for SiO2: a molecular-dynamics study of structural correlations[J]. Phys Rev B Condens Matter, 1990, 41(17): 12197-12209. [30] NAKANO A, BI L, KALIA R K, et al. Structural correlations in porous silica: molecular dynamics simulation on a parallel computer[J]. Physical Review Letters, 1993, 71(1): 85-88. [31] PATIL S P, REGE A, SAGARDAS, et al. Mechanics of nanostructured porous silica aerogel resulting from molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2017, 121(22): 5660-5668. [32] TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Phys Rev B Condens Matter, 1988, 37(12): 6991-7000. [33] NG T Y, JOSHI S C, YEO J, et al. Effects of nanoporosity on the mechanical properties and applications of aerogels in composite structures. Advances in Nanocomposites, 2016. DOI:10.1007/978-3-319-31662-8_4. [34] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. [35] KIEFFER J, ANGELL C A. Generation of fractal structures by negative pressure rupturing of SiO2 glass[J]. Journal of Non-Crystalline Solids, 1988, 106(1/2/3): 336-342. [36] YEO J J. Modeling and simulation of the structural evolution and thermal properties of ultralight aerogel and 2D materials[D]. Singapore: Nanyang Technological University, 2014. DOI:10.32657/10356/61804 [37] GELB L D. Simulation and modeling of aerogels using atomistic and mesoscale methods aerogels handbook. 2011. DOI:10.1007/978-1-4419-7589-8_24. [38] VACHER R, WOIGNIER T, PHALIPPOU J, et al. Fractal structure of base catalyzed and densified silica aerogels[J]. Journal of Non-Crystalline Solids, 1988, 106(1/2/3): 161-165. [39] VACHER R, WOIGNIER T, PELOUS J, et al. Structure and self-similarity of silica aerogels[J]. Phys Rev B Condens Matter, 1988, 37(11): 6500-6503. [40] GONÇALVES W, MORTHOMAS J, CHANTRENNE P, et al. Elasticity and strength of silica aerogels: a molecular dynamics study on large volumes[J]. Acta Materialia, 2018, 145: 165-174. [41] WOIGNIER T, PHALIPPOU J, VACHER R, et al. Different kinds of fractal structures in silica aerogels[J]. Journal of Non-Crystalline Solids, 1990, 121(1/2/3): 198-201. [42] KALLALA M, JULLIEN R, CABANE B. Crossover from gelation to precipitation[J]. Journal De Physique II, 1992, 2(1): 7-25. [43] EMMERLING A, FRICKE J. Scaling properties and structure of aerogels[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1): 781-788. [44] NAKAYAMA T, YAKUBO K, ORBACH R L. Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations[J]. Reviews of Modern Physics, 1994, 66(2): 381. [45] ZOSIMOV V V, LYAMSHEV L M. Fractals in wave processes[J]. Physics-Uspekhi, 1995, 38(4): 347-384. [46] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. [47] SCHNEIDER T, STOLL E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions[J]. Physical Review B, 1978, 17(3): 1302. [48] WOIGNIER T, REYNES J, HAFIDI ALAOUI A, et al. Different kinds of structure in aerogels: relationships with the mechanical properties[J]. Journal of Non-Crystalline Solids, 1998, 241(1): 45-52. [49] CAMPBELL T, KALIA R K, NAKANO A, et al. Structural correlations and mechanical behavior in nanophase silica glasses[J]. Physical Review Letters, 1999, 82(20): 4018. [50] GROΒ J, FRICKE J. Scaling of elastic properties in highly porous nanostructured aerogels[J]. Nanostructured Materials, 1995, 6(5/6/7/8): 905-908. [51] PATIL S P, REGE A, ITSKOV M, et al. Fracture of silica aerogels: an all-atom simulation study[J]. Journal of Non-Crystalline Solids, 2018, 498: 125-129. [52] 吴晓栋,崔 升,王 岭,等.耐高温气凝胶隔热材料的研究进展[J].材料导报,2015,29(9):102-108. WU X D, CUI S, WANG L, et al. Advance in research of high temperature resistant aerogel used as insulation material[J]. Materials Review, 2015, 29(9): 102-108(in Chinese). [53] LEE O J, LEE K H, JIN YIM T, et al. Determination of mesopore size of aerogels from thermal conductivity measurements[J]. Journal of Non-Crystalline Solids, 2002, 298(2/3): 287-292. [54] KUHN J, GLEISSNER T, ARDUINI-SCHUSTER M C, et al. Integration of mineral powders into SiO2 aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 291-295. [55] RAPAPORT D C. The art of molecular dynamics simulation[M]. Cambridge: Cambridge University Press, 2004. [56] MÜLLER-PLATHE F, BORDAT P. Reverse non-equilibrium molecular dynamics[M]//Novel Methods in Soft Matter Simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 310-326. [57] JUND P, JULLIEN R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Physical Review B, 1999, 59(21): 13707. [58] COQUIL T, FANG J, PILON L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4540-4548. |
[1] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
[2] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
[3] | SONG Jie, LIANG Danxi, YUE Luo, XU Guizhi, HU Xiao, CHANG Liang, XU Chao. Study on the Conductive and Corrosion-Resistant Properties of Pt Coatings on Titanium Substrates [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 873-881. |
[4] | WU Lihai, YU Puliang, ZHONG Min. First Principles Study on the Structure, Mechanics, Electronic and Optical Properties of Ternary Layered Nitride M2AlN (M=Ti, Zr) under High Pressure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 656-668. |
[5] | WANG Yunjie, ZHANG Zhiyuan, WEN Dulin, WU Zhencheng, SU Xin. First Principles Study on Mechanical Properties, Electronic Structure and Optical Properties of Ni, Cu, Zn Doped Tetragonal PbTiO3 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 258-266. |
[6] | LIU Ziyu, ZHENG Wenwen, FENG Yagang, YE Junhao, LIU Peng, YANG Xianfeng, LI Jiang. Fabrication and Properties of Er∶Lu2O3 Transparent Ceramics with Different Doping Concentrations [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1892-1900. |
[7] | FENG Yagang, TIAN Feng, LIU Ziyu, LIU Yiyang, WU Lexiang, LI Tingsong, LI Jiang. Fabrication and Properties of Layer-Structured YAG/Yb∶YAG Transparent Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1901-1908. |
[8] | LIU Qiang, LI Xiang, GUO Lihao, TOCI Guido, PIRRI Angela, PATRIZI Barbara, VANNINI Matteo, WU Junlin, LI Jiang. Pressure-Assisted Sintering and Properties of Yb∶CaF2 Transparent Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1918-1926. |
[9] | FENG Guiqing, XU Liuwei, YUAN Yazhou, ZHENG Yi, HUANG Xin, CHEN Min, WANG Shuaihua, WU Shaofan. Preparation and Properties of Rare Earth Ion Over-Doped TSAG and YAG/TSAG Composite Structural Transparent Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1944-1955. |
[10] | LIU Zuodong, PAN Qiyue, LIU Rui, CAO Yue, LI Siya, WANG Jiashun, YU Yongsheng, LIU Peng, JING Qiangshan. Fabrication and Microstructure of Y3+∶CaF2 Transparent Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1997-2003. |
[11] | LIU Xiaohu, LI Jianfu, ZHU Zhaojie, TU Chaoyang, WANG Geyang, YANG Jinfang, ZHU Jiangfeng, WANG Yan. Research Progress of Yb∶CaGdAlO4 Crystal and Its Ultra Fast Laser Technology [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1195-1207. |
[12] | WANG Qing, DIAO Huali, LIU Dongmei, ZHANG Dian, XU Gang. Effect of Mg2+ on Crystallization Habit of Calcium Sulfate Hemihydrate Whiskers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(10): 1897-1906. |
[13] | LI Yi, WU Haorong, HU Yiding, MENG Jiayuan, SONG Hongyuan, TANG Yanyan, LI Zhenhua, CHEN Liangwei, LIU Bin, YU Lan. Modulation of Mg Doping on Microstructure and Electro-Thermal Conduction of CuAlO2 Polycrystals with Delafossite Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1422-1430. |
[14] | ZHAO Ziwei, GAO Xiaowu, CAO Wenxin, LIU Kang, DAI Bing, WANG Yongjie, ZHU Jiaqi. Research Progress on the Effects of Surface Functionalization of Nanodiamonds [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(5): 852-864. |
[15] | LIU Manman, WANG Yuequn, XIONG Junjie, ZHANG Wenjie, KONG Shuyan, YANG Xiaoming, WANG Zujian, LONG Xifa, HE Chao. Electromechanical Properties of Ferroelectric Single Crystal PIN-PT with High Curie Temperature [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(4): 579-586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||