[1] JIN S, JIANG Y, JI H X, et al.Advanced 3D current collectors for lithium-based batteries[J]. Advanced Materials, 2018, 30(48): 1802014. [2] CHEN T M, JIN Y, LV H, et al.Applications of lithium-ion batteries in grid-scale energy storage systems[J]. Transactions of Tianjin University, 2020, 26(3): 208-217. [3] HENSCHEL J, HORSTHEMKE F, STENZEL Y P, et al.Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells-a comprehensive analytical study[J]. Journal of Power Sources, 2020, 447: 227370. [4] ULVESTAD A, REKSTEN A H, ANDERSEN H F, et al.Crystallinity of silicon nanoparticles: direct influence on the electrochemical performance of lithium ion battery anodes[J]. ChemElectroChem, 2020, 7(21): 4349-4353. [5] YU J, ZHAO L, HUANG Y F, et al.Progress and perspective of constructing solid electrolyte interphase on stable lithium metal anode[J]. Frontiers in Materials, 2020, 7: 71. DOI:10.3389/fmats.2020.00071. [6] 周忠仁,张英杰,董鹏,等.锂离子电池负极材料研究概述[J].有色设备,2020(2):7-11. ZHOU Z R, ZHANG Y J, DONG P, et al.Research overview of the anode materials for the lithium-ion batteries[J]. Nonferrous Metallurgical Equipment, 2020(2): 7-11(in Chinese). [7] WANG J S, SHEN Z G, YI M.Scalable and high-performance graphene/graphite nanosheet composite anode for lithium ion batteries via jet cavitation[J]. Energy Technology, 2020, 8(10): 2000511. [8] FANG S, BRESSER D, PASSERINI S.Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(1): 1902485. [9] REDDY R C K, LIN J, CHEN Y Y, et al. Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries[J]. Coordination Chemistry Reviews, 2020, 420: 213434. [10] ZHU S, LI J J, DENG X Y, et al.Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes[J]. Advanced Functional Materials, 2017, 27(9): 1605017. [11] ZHAO Y, LI X F, YAN B, et al.Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(8): 1502175. [12] MANICKAM S, GUNAWARDHANA N, YOSHIO M.Synthesis of ZnO hollow nanospheres and their electrochemical reactivity for lithium-ion batteries[J]. International Proceedings of Computer Science & Information Tech, 2012, 56: 64-69. [13] SUH D I, BYEON C C, LEE C L.Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor-liquid-solid growth mechanism[J]. Applied Surface Science, 2010, 257(5): 1454-1456. [14] ZHANG G H, HOU S C, ZHANG H, et al.High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode[J]. Advanced Materials, 2015, 27(14): 2400-2405. [15] ZHANG Y, LU Y, FENG S, et al.On-site evolution of ultrafine ZnO nanoparticles from hollow metal-organic frameworks for advanced lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2017, 5: 22512-22518. [16] KIM D, PARK M, KIM S M, et al.Conversion reaction of nanoporous ZnO for stable electrochemical cycling of binderless Si microparticle composite anode[J]. ACS Nano, 2018, 12: 10903-10913.[17] WU G L, JIA Z R, CHENG Y H, et al. Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries[J]. Applied Surface Science, 2019, 464: 472-478. [18] CHAN C K, PENG H, LIU G, et al.High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35. [19] KUSHIMA A, LIU X H, ZHU G, et al.Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation[J]. Nano Letters, 2011, 11(11): 4535-4541. [20] WANG H B, PAN Q M, CHENG Y X, et al.Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries[J]. Electrochimica Acta, 2009, 54(10): 2851-2855. [21] ZHANG Z Y, XU P P, WENG Y, et al.Nanotube network arrays with nickel oxide canopies as flexible high-energy anodes for lithium storage[J]. Journal of Alloys and Compounds, 2020, 847: 156366. [22] SONG J, WANG X, RIEDO E, et al.Systematic study on experimental conditions for large-scale growth of aligned ZnO nanowires on nitrides[J]. The Journal of Physical Chemistry B, 2005, 109(20): 9869-9872. [23] ZHOU Z H, ZHAN C H, WANG Y Y, et al.Rapid mass production of ZnO nanowires by a modified carbothermal reduction method[J]. Materials Letters, 2011, 65(5): 832-835. [24] YANG X L, ZHANG P C, WEN Z Y, et al.High performance silicon/carbon composite prepared by in situ carbon-thermal reduction for lithium ion batteries[J]. Journal of Alloys and Compounds, 2010, 496(1/2): 403-406. [25] ZHANG Z W, LI Z Q, HAO F B, et al.3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability[J]. Advanced Functional Materials, 2014, 24(17): 2500-2509. |