[1] MOULTON P F. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Josa B, 1986, 3(1): 125-133. [2] 张小翠,司继良,徐 民,等.钛宝石晶体的制备、光学和激光性能研究[J].中国激光,2014,41(5):157-161. ZHANG X C, SI J L, XU M, et al. Growth method, optical and laser properties of titanium-doped sapphire crystals[J]. Chinese Journal of Lasers, 2014, 41(5): 157-161(in Chinese). [3] BUSSIÉRE B, UTÉZA O, SANNER N, et al. Bulk laser-induced damage threshold of titanium-doped sapphire crystals[J]. Applied Optics, 2012, 51(32): 7826-7833. [4] ANGLOHER G, BRUCKMAYER M, BUCCI C, et al. Limits on WIMP dark matter using sapphire cryogenic detectors[J]. Astroparticle Physics, 2002, 18(1): 43-55. [5] LUCA M, CORON N, DUJARDIN C, et al. Scintillating and optical spectroscopy of Al2O3:Ti for dark matter searches[J]. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 606(3): 545-551. [6] MIKHAILIK V B, KRAUS H, BALCERZYK M, et al. Low-temperature spectroscopic and scintillation characterisation of Ti-doped Al2O3[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 546(3): 523-534. [7] GALUNOV N Z, GORBACHEVA T E, GRINYOV B V, et al. Radiation resistant composite scintillators based on Al2O3:Ti grains and their properties after irradiation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 104-110. [8] MIKHAILIK V B, KRAUS H, WAHL D, et al. Luminescence studies of Ti-doped Al2O3 using vacuum ultraviolet synchrotron radiation[J]. Applied Physics Letters, 2005, 86(10): 101909. [9] LACOVARA P, ESTEROWITZ L, KOKTA M. Growth, spectroscopy, and lasing of titanium-doped sapphire[J]. IEEE Journal of Quantum Electronics, 1985, 21(10): 1614-1618. [10] UECKER R, KLIMM D, GANSCHOW S, et al. Czochralski growth of Ti:sapphire laser crystals[C]//European Symposium on Optics and Photonics for Defence and Security. Proc SPIE 5990, Optically Based Materials and Optically Based Biological and Chemical Sensing for Defence II, Bruges, Belgium. 2005, 5990: 599006. [11] JOYCE D B, SCHMID F. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers[J]. Journal of Crystal Growth, 2010, 312(8): 1138-1141. [12] NING K J, LIU Y C, MA J, et al. Growth and characterization of large-scale Ti:sapphire crystal using heat exchange method for ultra-fast ultra-high-power lasers[J]. CrystEngComm, 2015, 17(14): 2801-2805. [13] DONG J, DENG P Z. Ti:sapphire crystal used in ultrafast lasers and amplifiers[J]. Journal of Crystal Growth, 2004, 261(4): 514-519. [14] NIZHANKOVSKIY S V, DAN’KO A Y, KRIVONOSOV E V, et al. Growth of large Ti: sapphire crystals by horizontal directional solidification in argon atmosphere[J]. Inorganic Materials, 2010, 46(1): 35-37. [15] NEHARI A, BRENIER A, PANZER G, et al. Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical characterizations[J]. Crystal Growth & Design, 2011, 11(2): 445-448. [16] ALOMBERT-GOGET G, SEN G, PEZZANI C, et al. Large Ti-doped sapphire single crystals grown by the Kyropoulos technique for petawatt power laser application[J]. Optical Materials, 2016, 61: 21-24. [17] ALOMBERT-GOGET G, GUYOT Y, NEHARI A, et al. Scattering defect in large diameter titanium-doped sapphire crystals grown by the Kyropoulos technique[J]. CrystEngComm, 2018, 20(4): 412-419. [18] STELIAN C, ALOMBERT-GOGET G, SEN G, et al. Interface effect on titanium distribution during Ti-doped sapphire crystals grown by the Kyropoulos method[J]. Optical Materials, 2017, 69: 73-80. [19] GHEZAL E A, LI H, NEHARI A, et al. Effect of pulling rate on bubbles distribution in sapphire crystals grown by the micropulling down (μ-PD) technique[J]. Crystal Growth & Design, 2012, 12(8): 4098-4103. [20] LI H, GHEZAL E A, ALOMBERT-GOGET G, et al. Qualitative and quantitative bubbles defects analysis in undoped and Ti-doped sapphire crystals grown by Czochralski technique[J]. Optical Materials, 2014, 37: 132-138. [21] LI H, GHEZAL E A, NEHARI A, et al. Bubbles defects distribution in sapphire bulk crystals grown by Czochralski technique[J]. Optical Materials, 2013, 35(5): 1071-1076. |