JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (5): 959-966.
• Reviews • Previous Articles Next Articles
XING Shulin1, 2, HE Yunfei1, 2, HE Jizhuang1, 2, LI Jiahua1, 2, FU Chunlin1, 2
Received:
2020-12-16
Online:
2021-05-15
Published:
2021-06-15
[1] 彭家奕,夏雪峰,江奕华,等.无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J].材料导报,2018,32(23):4027-4040+4060. PENG J Y, XIA X F, JIANG Y H, et al. Application of inorganic charge transportation layers in organic-inorganic hybrid perovskite solar cells: a review[J]. Materials Review, 2018, 32(23): 4027-4040+4060(in Chinese). [2] WANG Z Y, ZHU X J, ZUO S N, et al. 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh[J]. Advanced Functional Materials, 2020, 30(4): 1908298. [3] BAIKIE T, FANG Y N, KADRO J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18): 5628-5641. [4] SUN S Y, SALIM T, MATHEWS N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy Environ Sci, 2014, 7(1): 399-407. [5] OGOMI Y, MORITA A, TSUKAMOTO S, et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm[J]. The Journal of Physical Chemistry Letters, 2014, 5(6): 1004-1011. [6] D'INNOCENZO V, GRANCINI G, ALCOCER M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nature Communications, 2014, 5: 3586. [7] JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8): 682-689. [8] KIM H S, IM S H, PARK N G. Organolead halide perovskite: new horizons in solar cell research[J]. Journal of Physical Chemistry C, 2014, 118(11): 5615-5625. [9] LI J L, XIA R, QI W J, et al. Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization[J]. Journal of Power Sources, 2021, 485: 229313. [10] 张永飞.钙钛矿太阳能电池的稳定性研究及其性能优化[D].大连:大连理工大学,2019. ZHANG Y F. Improving the stability and property of perovskite solar cells[D]. Dalian: Dalian University of Technology, 2019(in Chinese). [11] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319. [12] 杨立群,马晓辉,郑士建,等.柔性钙钛矿太阳能电池中电极材料和电荷传输材料的研究进展[J].发光学报,2020,41(10):1175-1194. YANG L Q, MA X H, ZHENG S J, et al. Research progress on electrode materials and charge transport materials in flexible perovskite solar cells[J]. Chinese Journal of Luminescence, 2020, 41(10): 1175-1194(in Chinese). [13] 张继涛.基于溶剂配位-反溶剂萃取法的CH3NH3PbI3钙钛矿薄膜质量调控及其光伏器件性能研究[D].太原:太原理工大学,2017. ZHANG J T. Quality control of CH3 NH3PbI3 perovskite thin films based on solvent coordination antisolvent extraction and their photovoltaic device performance[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese). [14] GREEN M A. Corrigendum to ‘Solar cell efficiency tables (version 49)'[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(4): 333-334. [15] 朱立华,商雪妮,雷凯翔,等.应用于钙钛矿太阳能电池中金属氧化物电子传输材料的研究进展[J].发光学报,2020,41(5):481-497. ZHU L H, SHANG X N, LEI K X, et al. Research progress of metal oxide electron transporting materials applied in perovskite solar cells[J]. Chinese Journal of Luminescence, 2020, 41(5): 481-497(in Chinese). [16] EPERON G E, BURLAKOV V M, GORIELY A, et al. Neutral color semitransparent microstructured perovskite solar cells[J]. ACS Nano, 2014, 8(1): 591-598. [17] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [18] LAKHDAR N, HIMA A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3[J]. Optical Materials, 2020, 99: 109517. [19] CHAUDHARY J, GUPTA S K, VERMA A S, et al. Impact of electron transport layer material on the performance of CH3 NH3PbBr3 perovskite-based photodetectors[J]. Journal of Materials Science, 2020, 55(10): 4345-4357. [20] 张洁静.基于TiO2/BaTiO3核壳结构介孔层的钙钛矿太阳电池的制备与性能研究[D].长春:吉林大学,2019. ZHANG J J. Preparation and performance of perovskite solar cells based on TiO2/BaTiO3 core-shell mesoporous layers[D]. Changchun: Jilin University, 2019(in Chinese). [21] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. [22] GUO Y L, SHOYAMA K, SATO W, et al. Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells[J]. Advanced Energy Materials, 2016, 6(6): 1502317. [23] ZHANG Q F, DANDENEAU C S, ZHOU X Y, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Advanced Materials, 2009, 21(41): 4087-4108. [24] LUO J, WANG Y X, ZHANG Q F. Progress in perovskite solar cells based on ZnO nanostructures[J]. Solar Energy, 2018, 163: 289-306. [25] KUMAR M H, YANTARA N, DHARANI S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J]. Chemical Communications (Cambridge, England), 2013, 49(94): 11089-11091. [26] KIM J, KIM G, KIM T K, et al. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer[J]. J Mater Chem A, 2014, 2(41): 17291-17296. [27] MAHMOOD K, SWAIN B S, AMASSIAN A. 16.1% efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays[J]. Advanced Energy Materials, 2015, 5(17): 1500568. [28] REHMAN F, MAHMOOD K, KHALID A, et al. Solution-processed barium hydroxide modified boron-doped ZnO bilayer electron transporting materials: toward stable perovskite solar cells with high efficiency of over 20.5%[J]. Journal of Colloid and Interface Science, 2019, 535: 353-362. [29] JIANG Q, ZHANG X W, YOU J B. SnO2: a wonderful electron transport layer for perovskite solar cells[J]. Small, 2018, 14(31): 1801154. [30] YU Y H, LI J Y, GENG D L, et al. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures[J]. ACS Nano, 2015, 9(1): 564-572. [31] REN X D, YANG D, YANG Z, et al. Solution-processed Nb∶SnO2 electron transport layer for efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2421-2429. [32] HUANG L K, SUN X X, LI C, et al. UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21909-21920. [33] 朱世杰,丁 毅,郑翠翠,等.SnCl4醇水溶液制备SnO2电子传输层及其在钙钛矿太阳电池中的应用[J].人工晶体学报,2017,46(10):1885-1890+1896. ZHU S J, DING Y, ZHENG C C, et al. Preparation of SnO2 electron transport layer using SnCl4 alcohol aqueous solution and its application in perovskite solar cells[J]. Journal of Synthetic Crystals, 2017, 46(10): 1885-1890+1896(in Chinese). [34] YUN A J, KIM J, HWANG T, et al. Origins of efficient perovskite solar cells with low-temperature processed SnO2 electron transport layer[J]. ACS Applied Energy Materials, 2019, 2(5): 3554-3560. [35] 王艳香,高培养,范学运,等.界面修饰对SnO2基钙钛矿太阳能电池的影响研究[J].陶瓷学报,2020,41(4):500-507. WANG Y X, GAO P Y, FAN X Y, et al. Effect of interface modification on the performances of SnO2-based perovskite solar cells[J]. Journal of Ceramics, 2020, 41(4): 500-507(in Chinese). [36] WANG Y X, GAO P Y, FAN X Y, et al. Effect of SnO2 annealing temperature on the performance of perovskite solar cells[J]. Journal of Inorganic Materials, 2021, 36(2): 168. [37] WANG H B, LIU H R, YE F H, et al. Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%[J]. Journal of Power Sources, 2021, 481: 229160. [38] LEE Y H, LUO J S, SON M K, et al. Enhanced charge collection with passivation layers in perovskite solar cells[J]. Advanced Materials, 2016, 28(20): 3966-3972. [39] BI D Q, MOON S J, HÄGGMAN L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. RSC Advances, 2013, 3(41): 18762. [40] LEE J H, SHIN D, RHEE R, et al. Band alignment engineering between planar SnO2 and halide perovskites via two-step annealing[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6545-6550. [41] WANG P Y, LI R J, CHEN B B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%[J]. Advanced Materials, 2020, 32(6): 1905766. [42] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647. [43] ALI F, PHAM N D, FAN L J, et al. Low hysteresis perovskite solar cells using an electron-beam evaporated WO3-x thin film as the electron transport layer[J]. ACS Applied Energy Materials, 2019, 2(8): 5456-5464. [44] 王传坤,唐 颖,刘 辉.基于PCBM电子传输层的有机太阳能电池理论研究[J].化工新型材料,2019,47(3):181-184+188. WANG C K, TANG Y, LIU H. Theoretical study of heterojunction organic solar cell based on PCBM electronic buffer layer[J]. New Chemical Materials, 2019, 47(3): 181-184+188(in Chinese). [45] WOJCIECHOWSKI K, LEIJTENS T, SIPROVA S, et al. C60 as an efficient n-type compact layer in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2015, 6(12): 2399-2405. [46] LI S H, XING Z, WU B S, et al. Hybrid fullerene-based electron transport layers improving the thermal stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20733-20740. [47] HUANG J C, GU Z W, ZUO L J, et al. Morphology control of planar heterojunction perovskite solar cells with fluorinated PDI films as organic electron transport layer[J]. Solar Energy, 2016, 133: 331-338. [48] 汪霏霏,汪 东,张国兵,等.低LUMO/HOMO共轭聚合物的制备及其电子传输性能[J].液晶与显示,2018,33(8):638-644. WANG F F, WANG D, ZHANG G B, et al. Preparation and electron transport properties of low LUMO/HOMO conjugated polymers[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(8): 638-644(in Chinese). [49] LIU H R, LI S H, DENG L L, et al. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 23982-23989. [50] CHEN W, SHI Y Q, WANG Y, et al. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%[J]. Nano Energy, 2020, 68: 104363. [51] SAWICKA-CHUDY P, SIBIN'SKI M, RYBAK-WILUSZ E, et al. Review of the development of copper oxides with titanium dioxide thin-film solar cells[J]. AIP Advances, 2020, 10(1): 010701. [52] KIM H S, LEE J W, YANTARA N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Letters, 2013, 13(6): 2412-2417. [53] YU W, LI F, WANG H, et al. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells[J]. Nanoscale, 2016, 8(11): 6173-6179. [54] BEEDRI N I, BAVISKAR P K, SUPEKAR A T, et al. Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell[J]. International Journal of Modern Physics B, 2018, 32(19): 1840046. [55] ZHANG C X, DENG X S, ZHENG J F, et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells[J]. Electrochimica Acta, 2018, 283: 1134-1145. [56] LEE K M, LIN W J, CHEN S H, et al. Control of TiO2 electron transport layer properties to enhance perovskite photovoltaics performance and stability[J]. Organic Electronics, 2020, 77: 105406. [57] HU W P, YANG S F, YANG S H. Surface modification of TiO2 for perovskite solar cells[J]. Trends in Chemistry, 2020, 2(2): 148-162. [58] HUANG Y Y, LI S N, WU C R, et al. Interfacial modification of various alkali metal cations in perovskite solar cells and their influence on photovoltaic performance[J]. New Journal of Chemistry, 2020, 44(21): 8902-8909. [59] AHMADI S H, GHAFFARKANI M, AMERI M, et al. Solvent selection for fabrication of low temperature ZnO electron transport layer in perovskite solar cells[J]. Optical Materials, 2020, 106: 109977. [60] ZHU Q, WANG Z J, CAI X W, et al. Enhanced carrier separation efficiency and performance in planar-structure perovskite solar cells through an interfacial modifying layer of ultrathin mesoporous TiO2[J]. Journal of Power Sources, 2020, 465: 228251. [61] SHAHVARANFARD F, ALTOMARE M, HOU Y, et al. Engineering of the electron transport layer/perovskite interface in solar cells designed on TiO2 rutile nanorods[J]. Advanced Functional Materials, 2020, 30(10): 1909738. |
[1] | CHENG Youliang, DU Huibin, ZHANG Zhongbao, WANG Kai. Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1629-1639. |
[2] | ZHAO Ya, ZHUANG Zhong, WEI Mengyuan, JIANG Qingsong, YANG Xiao, XUN Wei, LIU Yuhao. Effect of Sulfur-Rich Precursor Solution on Photovoltaic Performance of CuPbSbS3 Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1640-1647. |
[3] | ZHANG Bo, SONG Zhicheng, NI Yufeng, WEI Kaifeng. Boron Doping Technology for the Front Polysilicon Layer of Full TOPCon Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 329-335. |
[4] | LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 38-50. |
[5] | YANG Lu, SONG Zhicheng, NI Yufeng, ZHANG Ting, WEI Kaifeng, RUAN Miao, SHI Huijun, ZHENG Leijie. Process Study on Selective Emitter of TOPCon Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 138-144. |
[6] | LI Jianing, GE Xin, HUANG Zixuan, LIU Zhen, WANG Pengyang, SHI Biao, ZHAO Ying, ZHANG Xiaodan. Effect of Sputtered NiOx Modified by Self-Assembled Layer on Performance of Blade-Coated Wide-Bandgap Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1458-1466. |
[7] | YU Na, XU Congyan, LI Qiulian, CHEN Yufei, ZHAO Yonggang, ZHOU Zhineng, YANG Xin, WANG Shurong. Effect of a Small Amount of Ge on the Properties of Cu2ZnSnSe4 Thin Films and Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 460-466. |
[8] | HUANG Xiaokun, YANG Aijun, LI Jiansheng, JIANG Linqin, QIU Yu. Performance of Perovskite Solar Cells Based on CuS Hole Transport Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 485-492. |
[9] | WU Zhonghang, SUN Bin, HUANG Gang, QU Qian, TANG Yiwen, SUN Jiuai. Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 196-207. |
[10] | LU Hui, WEN Qian, WANG Jiaqi, SHA Simiao, WANG Kang, SUN Weidong, WU Jiandong, MA Jinfu, HOU Chunping, SHENG Zhilin, FENG Weiguang. Research Progress of Perovskite Solar Cells Based on ZnO as Electron Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 208-219. |
[11] | WANG Chuankun, LU Chengwei, OUYANG Yujie, ZHANG Shengjun, HAO Yanling. Optimization and Numerical Simulation of Sn-Based CH3NH3SnI3 Perovskite Solar Cell [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(11): 2076-2084. |
[12] | LU Hui, LI Tong, WEN Qian, SHA Simiao, MA Simin, XUE Xiaoyang, WANG Kang, SHENG Zhilin, MA Jinfu. Effect of Salicylic Acid Additive on the Properties of All-Inorganic Tin-Lead Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1387-1395. |
[13] | ZHANG Bo, LIN Mingyu, SUN Shuyan, LUO Xinze. SiW12 Cooperating with CsPbI3 to Improve the Photoelectric Conversion Efficiency of TiO2 Nanotubes [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1034-1041. |
[14] | REN Jintao, CHEN Qing, HUO Yu, WU Zhixin, YU Chunyan, ZHAI Guangmei. Effect of Acetylsalicylic Acid Passivator on the Performance of Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1042-1050. |
[15] | QIN Yinglian, QIN Jianfang. Synthesis, Structure and Properties of 3D Copper(I) Pseudohalide Compound Constructed by Conformationally Flexible N-Heterocylic Ligand [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1059-1068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||