[1] LI X L, ZHOU J W, ZHANG J X, et al.Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries[J].Advanced Materials, 2019, 31(39):1903852. [2] ZHANG X, ZHANG Q, ZHANG Z, et al.Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes[J].Chemical Communications (Cambridge, England), 2015, 51(78):14636-14639. [3] SONG L, WANG T, WU C, et al.A long-life Li-CO2 battery employing a cathode catalyst of cobalt-embedded nitrogen-doped carbon nanotubes derived from a Prussian blue analogue[J].Chemical Communications (Cambridge, England), 2019, 55(85):12781-12784. [4] GE B C, SUN Y, GUO J X, et al.A Co-doped MnO2 catalyst for Li-CO2 batteries with low overpotential and ultrahigh cyclability[J].Small, 2019, 15(34):1902220. [5] PIPES R, BHARGAV A, MANTHIRAM A.Nanostructured anatase titania as a cathode catalyst for Li-CO2 batteries[J].ACS Applied Materials & Interfaces, 2018, 10(43):37119-37124. [6] AHMADIPARIDARI A, WARBURTON R E, MAJIDI L, et al.A long-cycle-life lithium-CO2 battery with carbon neutrality[J].Advanced Materials, 2019, 31(40):1902518. [7] LU S Y, SHANG Y, MA S Y, et al.Porous NiO nanofibers as an efficient electrocatalyst towards long cycling life rechargeable Li-CO2 batteries[J].Electrochimica Acta, 2019, 319:958-965. [8] XU S M, DAS S K, ARCHER L A.The Li-CO2 battery:a novel method for CO2 capture and utilization[J].RSC Advances, 2013, 3(18):6656. [9] LIU Y L, WANG R, LYU Y C, et al.Rechargeable Li/CO2-O2 (2∶1) battery and Li/CO2 battery[J].Energy & Environmental Science, 2014, 7(2):677. [10] NÉMETH K, SRAJER G.CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal-air type rechargeable batteries[J].RSC Advances, 2014, 4(4):1879-1885. [11] HOU Y Y, WANG J Z, LIU L L, et al.Mo2C/CNT:an efficient catalyst for rechargeable Li-CO2 batteries[J].Advanced Functional Materials, 2017, 27(27):1700564. [12] XIE J F, LIU Q, HUANG Y Y, et al.A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO[J].Journal of Materials Chemistry A, 2018, 6(28):13952-13958. [13] MEINI S, TSIOUVARAS N, SCHWENKE K U, et al.Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution:implications for cycle-life of Li-air cells[J].Physical Chemistry Chemical Physics, 2013, 15(27):11478-11493. [14] ZHAO Z W, HUANG J, PENG Z Q.Achilles’ heel of lithium-air batteries:lithium carbonate[J].Angewandte Chemie International Edition, 2018, 57(15):3874-3886. [15] QIAO Y, YI J, WU S C, et al.Li-CO2 electrochemistry:a new strategy for CO2 fixation and energy storage[J].Joule, 2017, 1(2):359-370. [16] YANG S X, QIAO Y, HE P, et al.A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst[J].Energy & Environmental Science, 2017, 10(4):972-978. [17] ZHANG Z, ZHANG Q, CHEN Y, et al.The first introduction of graphene to rechargeable Li-CO2 batteries[J].Angewandte Chemie, 2015, 127(22):6650-6653. [18] ZHANG B W, JIAO Y, CHAO D L, et al.Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries[J].Advanced Functional Materials, 2019, 29(49):1904206. [19] XING W, LI S, DU D F, et al.Revealing the impacting factors of cathodic carbon catalysts for Li-CO2 batteries in the pore-structure point of view[J].Electrochimica Acta, 2019, 311:41-49. [20] XIAO Y, DU F, HU C G, et al.High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts[J].ACS Energy Letters, 2020, 5(3):916-921. [21] CHANG Z, XU J, ZHANG X, et al.Recent progress in electrocatalyst for Li-O2 batteries[J].Advanced Energy Materials, 2017, 7(23):1700875. [22] CI L J, SONG L, JIN C H, et al.Atomic layers of hybridized boron nitride and graphene domains[J].Nature Materials, 2010, 9(5):430-435. [23] LU J, LEE Y J, LUO X, et al.A lithium-oxygen battery based on lithium superoxide[J].Nature, 2016, 529(7586):377-382. [24] LIU T, LIU Z G, KIM G, et al.Understanding LiOH chemistry in a ruthenium-catalyzed Li-O2battery[J].Angewandte Chemie International Edition, 2017, 56(50):16057-16062. [25] BIE S Y, DU M L, HE W X, et al.Carbon nanotube@RuO2 as a high performance catalyst for Li-CO2 batteries[J].ACS Applied Materials & Interfaces, 2019, 11(5):5146-5151. [26] XING Y, YANG Y, LI D H, et al.Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries[J].Advanced Materials, 2018, 30(51):1803124. [27] GAO D F, ZEGKINOGLOU I, DIVINS N J, et al.Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols[J].ACS Nano, 2017, 11(5):4825-4831. [28] ZHANG Z, ZHANG Z W, LIU P F, et al.Identification of cathode stability in Li-CO2batteries with Cu nanoparticles highly dispersed on N-doped graphene[J].Journal of Materials Chemistry A, 2018, 6(7):3218-3223. [29] AHMAD M Z, PETERS T A, KONNERTZ N M, et al.High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes[J].Separation and Purification Technology, 2020, 230:115858. [30] LI S W, DONG Y, ZHOU J W, et al.Carbon dioxide in the cage:manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2batteries[J].Energy & Environmental Science, 2018, 11(5):1318-1325. [31] WANG X G, WANG C Y, XIE Z J, et al.Improving electrochemical performances of rechargeable Li-CO2 batteries with an electrolyte redox mediator[J].Chem Electro Chem, 2017, 4(9):2145-2149. [32] CHEN J M, ZOU K Y, DING P, et al.Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li-CO2 batteries[J].Advanced Materials, 2019, 31(2):1805484. [33] LI X, YANG S X, FENG N N, et al.Progress in research on Li-CO2 batteries:mechanism, catalyst and performance[J].Chinese Journal of Catalysis, 2016, 37(7):1016-1024. [34] MEKONNEN Y S, KNUDSEN K B, MY'RDAL J S, et al.Communication:the influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-air batteries[J].The Journal of Chemical Physics, 2014, 140(12):121101. [35] HU X F, LI Z F, CHEN J.Flexible Li-CO2 batteries with liquid-free electrolyte[J].Angewandte Chemie International Edition, 2017, 56(21):5785-5789. [36] LI C, GUO Z Y, YANG B C, et al.A rechargeable Li-CO2 battery with a gel polymer electrolyte[J].Angewandte Chemie International Edition, 2017, 56(31):9126-9130. [37] LIU Y, LIN D, LIANG Z, et al.Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode[J].Nat Commun, 2016, 7:10992. [38] LIU B, SUN Y L, LIU L Y, et al.Recent advances in understanding Li-CO2 electrochemistry[J].Energy & Environmental Science, 2019, 12(3):887-922. [39] MUSHTAQ M, GUO X W, BI J P, et al.Polymer electrolyte with composite cathode for solid-state Li-CO2 battery[J].Rare Metals, 2018, 37(6):520-526. [40] CHEN C J, YANG J J, CHEN C H, et al.Improvement of lithium anode deterioration for ameliorating cyclabilities of non-aqueous Li-CO2 batteries[J].Nanoscale, 2020, 12(15):8385-8396. |