JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (8): 1583-1592.
• Reviews • Previous Articles Next Articles
ZHENG Beibei1,2, SHAO Ling2, CHEN Yingwei2
Received:
2021-03-26
Online:
2021-08-15
Published:
2021-09-14
CLC Number:
ZHENG Beibei, SHAO Ling, CHEN Yingwei. Research Progress on Preparation Technology of Practical Bi-Based Superconducting Tape[J]. Journal of Synthetic Crystals, 2021, 50(8): 1583-1592.
[1] SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Room-temperature superconductivity in a carbonaceous sulfur hydride[J]. Nature, 2020, 586(7829): 373-377. [2] 宋灿立,马旭村,薛其坤.基于异质外延薄膜的界面超导电性研究[J].物理实验,2019,39(1):1-10. SONG C L, MA X C, XUE Q K. Interface superconductivity based on heteroepitaxial films[J]. Physics Experimentation, 2019, 39(1): 1-10(in Chinese). [3] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures[J]. Physical Review Letters, 2019, 122(2): 027001. [4] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures[J]. Nature, 2019, 569(7757): 528-531. [5] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. [6] CAO Y, FATEMI V, FANG S A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. [7] SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures[J]. Physical Review Letters, 2021, 126(11): 117003. [8] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[J]. Nature, 2015, 525(7567): 73-76. [9] BHAUMIK A, SACHAN R, GUPTA S, et al. Discovery of high-temperature superconductivity (Tc=55 K) in B-doped Q-carbon[J]. ACS Nano, 2017, 11(12): 11915-11922. [10] EKIMOV E A, SIDOROV V A, BAUER E D, et al. Superconductivity in diamond[J]. Nature, 2004, 428(6982): 542-545. [11] TAKESUE I, HARUYAMA J, KOBAYASHI N, et al. Superconductivity in entirely end-bonded multiwalled carbon nanotubes[J]. Physical Review Letters, 2006, 96(5): 057001. [12] KOCIAK M, KASUMOV A Y, GUÉRON S, et al. Superconductivity in ropes of single-walled carbon nanotubes[J]. Physical Review Letters, 2001, 86(11): 2416-2419. [13] PALSTRA T T M, ZHOU O, IWASA Y, et al. Superconductivity at 40 K in cesium doped C60[J]. Solid State Communications, 1995, 93(4): 327-330. [14] TANIGAKI K, EBBESEN T W, SAITO S, et al. Superconductivity at 33 K in CsxRbyC60[J]. Nature, 1991, 352(6332): 222-223. [15] HEBARD A F, ROSSEINSKY M J, HADDON R C, et al. Superconductivity at 18 K in potassium-doped C60[J]. Nature, 1991, 350(6319): 600-601. [16] SARRAO J L, MORALES L A, THOMPSON J D, et al. Plutonium-based superconductivity with a transition temperature above 18 K[J]. Nature, 2002, 420(6913): 297-299. [17] WASTIN F, BOULET P, REBIZANT J, et al. Advances in the preparation and characterization of transuranium systems[J]. Journal of Physics: Condensed Matter, 2003, 15(28): S2279-S2285. [18] PETROVIC C, PAGLIUSO P G, HUNDLEY M F, et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K[J]. Journal of Physics: Condensed Matter, 2001, 13(17): L337-L342. [19] GEIBEL C, SCHANK C, THIES S, et al. Heavy-fermion superconductivity at Tc=2 K in the antiferromagnet UPd2Al3[J]. Zeitschrift Für Physik B Condensed Matter, 1991, 84(1): 1-2. [20] STEWART G R, FISK Z, WILLIS J O, et al. Possibility of coexistence of bulk superconductivity and spin fluctuations in UPt3[J]. Physical Review Letters: 1984: 1984, 52(8): 679-682. [21] OTT H R, RUDIGIER H, FISK Z, et al. UBe13: an unconventional actinide superconductor[J]. Physical Review Letters, 1983, 50(20): 1595-1598. [22] STEGLICH F, AARTS J, BREDL C D, et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2[J]. Physical Review Letters, 1979, 43(25): 1892-1896. [23] MATTHIAS B T, GEBALLE T H, COMPTON V B. Superconductivity[J]. Reviews of Modern Physics, 1963, 35(1): 1-22. [24] BEDNORZ J G, MÜLLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Zeitschrift Für Physik B Condensed Matter, 1986, 64(2): 189-193. [25] WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910. [26] MAEDA H, TANAKA Y, FUKUTOMI M, et al. A new high-Tc oxide superconductor without a rare earth element[J]. Japanese Journal of Applied Physics, 1988, 27(2): L209-L210. [27] SUBRAMANIAN M A, TORARDI C C, CALABRESE J C, et al. A new high-temperature superconductor: Bi2Sr3-xCaxCu2O8+y[J]. Science, 1988, 239(4843): 1015-1017. [28] TAKANO M, TAKADA J, ODA K, et al. High-Tc Phase promoted and stabilized In the Bi, Pb-Sr-Ca-Cu-O system[J]. Japanese Journal of Applied Physics, 1988, 27(Part 2, No. 6): L1041-L1043. [29] TOGANO K, KUMAKURA H, MAEDA H, et al. Properties of Pb-doped Bi-Sr-Ca-Cu-O superconductors[J]. Applied Physics Letters, 1988, 53(14): 1329-1331. [30] PARKIN S S P, LEE V Y, ENGLER E M, et al. Bulk superconductivity at 125 K in Tl2Ca2Ba2Cu3Ox[J]. Physics Review Letters, 1988, 60(24): 2539-2542. [31] SCHILLING A, CANTONI M, GUO J D, et al. Superconductivity above 130 K In the Hg-Ba-Ca-Cu-O system[J]. Nature, 1993, 363(6424): 56-58. [32] DAI P, CHAKOUMAKOS B C, SUN G F, et al. Synthesis and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8+δ by Tl substitution[J]. Physica C: Superconductivity, 1995, 243(3/4): 201-206. [33] GAO L, XUE Y Y, CHEN F, et al. Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ(m=1, 2, and 3) under quasihydrostatic pressures[J]. Physical Review B, 1994, 50(6): 4260-4263. [34] RAZZAQUE A, ISLAM A K M A, ISLAM F N, et al. Superconductivity of Li under pressure[J]. Solid State Communications, 2004, 131(11): 671-675. [35] NAGAMATSU J, NAKAGAWA N, MURANAKA T, et al. Superconductivity at 39 K in magnesium diboride[J]. Nature, 2001, 410(6824): 63-64. [36] CAVA R J, TAKAGI H, BATLOGG B, et al. Superconductivity at 23 K in yttrium palladium boride carbide[J]. Nature, 1994, 367(6459): 146-148. [37] CAVA R J, BATLOGG B, KRAJEWSKI J J, et al. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite[J]. Nature, 1988, 332(6167): 814-816. [38] GE J F, LIU Z L, LIU C H, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3[J]. Nature Materials, 2015, 14(3): 285-289. [39] WU G, XIE Y L, CHEN H, et al. Superconductivity at 56 K in samarium-doped SrFeAsF[J]. Journal of Physics Condensed Matter, 2009, 21(14): 142203. [40] REN Z A, CHE G C, DONG X L, et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-δ (Re=rare-earth metal) without fluorine doping[J]. EPL (Europhysics Letters), 2008, 83(1): 17002. [41] CHEN X H, WU T, WU G, et al. Superconductivity at 43 K in SmFeAsO1-xFx[J]. Nature, 2008, 453(7196): 761-762. [42] KAMIHARA Y, WATANABE T, HIRANO M, et al. Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc= 26 K[J]. Journal of the American Chemical Society, 2008, 130(11): 3296-3297. [43] KAMIHARA Y, HIRAMATSU H, HIRANO M, et al. Iron-based layered superconductor: laofep[J]. ChemInform, 2006, 37(45): no. [44] GAVALER J R. Superconductivity in Nb-Ge films above 22 K[J]. Applied Physics Letters, 1973, 23(8): 480-482. [45] 郑贝贝,邵 玲.国内Bi系高温超导材料制备工艺研究进展[J].材料导报,2019,33(S1):318-320. ZHENG B B, SHAO L. Domestic research progress on preparation technology of Bi-based high-temperature superconducting materials[J]. Materials Reports, 2019, 33(S1): 318-320(in Chinese). [46] YU Y J, MA L G, CAI P, et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ[J]. Nature, 2019, 575(7781): 156-163. [47] HASHIMOTO M, NOWADNICK E A, HE R H, et al. Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O8+δ[J]. Nature Materials, 2015, 14(1): 37-42. [48] TOKURA Y, TAKAGI H, UCHIDA S. A superconducting copper oxide compound with electrons as the charge carriers[J]. Nature, 1989, 337(6205): 345-347. [49] 吴会燕.高温超导体结构和超导电性以及掺杂锰氧化物Sr1-xCexMnO3磁电性质的研究[D].合肥:中国科学技术大学,2009. WU H Y. Research on structure and superconductivity of high temperature superconductors and magnetic and transport properties of doped manganites Sr1-xCexMnO3[D]. Hefei: University of Science and Technology of China, 2009(in Chinese). [50] 吴力军.Bi系和Y系高温超导材料的形成机理、结构与缺陷的研究[D].长沙:湖南大学,2002. WU L J. Study on the formation mechanism, structure and defects of Bi-series and Y-series high-temperature superconducting materials. Changsha: Hunan University, 2002. [51] 易汉平,张劲松,刘 庆,等.实用Bi系高温超导带材[J].中国有色金属学报,2004,14(S1):341-346. YI H P, ZHANG J S, LIU Q, et al. Practical BSCCO high temperature superconducting tapes[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(S1): 341-346(in Chinese). [52] 白利锋.实用高温超导材料及其在电机中的应用[D].西安:西北工业大学,2017. BAI L F. tudy on Practical High Temperature Superconducting Materials and the Applications in Motors[D]. Xi’an: Northwestern Polytechnical University, 2017(in Chinese). [53] 李成山.银及银合金包套Bi-2223高温超导带材的制备和性能[D].沈阳:东北大学,2004. LI C S. Preparation and properties of silver and silver alloy sheathed Bi-2223 high temperature superconducting tape[D]. Shenyang: Northeastern University, 2004(in Chinese). [54] 张 影.Bi系超导材料的Sol-Gel法制备、机制及掺杂研究[D].沈阳:东北大学,2010. ZHANG Y. The fabrication, mechanism and doping researches of Bi-system superconductor materials by sol-gel method[D]. Shenyang: Northeastern University, 2010(in Chinese). [55] 路晓明.Bi2212薄膜的Pechini溶胶-凝胶法制备和优化、微结构及其超导性能的研究[D].沈阳:东北大学,2014. LU X M. Research on fabrication and optimization, microstructure and superconducting properties of Bi2212 thin films by pechini sol-gel method[D]. Shenyang: Northeastern University, 2014(in Chinese). [56] SATO K I, KOBAYASHI S I, NAKASHIMA T. Present status and future perspective of bismuth-based high-temperature superconducting wires realizing application systems[J]. Japanese Journal of Applied Physics, 2012, 51(1R): 010006. [57] KOBAYASHI S, KATO T, YAMAZAKI K, et al. Controlled over pressure processing of Bi2223 long length wires[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2534-2537. [58] KOBAYASHI S, YAMAZAKI K, KATO T, et al. Controlled over-pressure sintering process of Bi2223 wires[J]. Physica C: Superconductivity and Its Applications, 2005, 426/427/428/429/430/431: 1132-1137. [59] NAITO T, FUJISHIRO H, YAMADA Y. Thermal conductivity and dilatation of Bi-2223/Ag (DI-BSCCO) superconducting wire laminated with various thin alloy tapes[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1-4. [60] 梁晓宇,李海涛,翟 蕾,等.高温超导带材制备工艺的发展现状[J].低温与超导,2019,47(8):1-9. LIANG X Y, LI H T, ZHAI L, et al. The present situation of the preparation process for high-temperature superconducting tapes[J]. Cryogenics & Superconductivity, 2019, 47(8): 1-9(in Chinese). [61] PATNAIK S, FELDMANN D M, POLYANSKII A A, et al. Local measurement of current density by magneto-optical current reconstruction in normally and overpressure processed Bi-2223 tapes[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2930-2933. [62] NAKASHIMA T, KOBAYASHI S, KAGIYAMA T, et al. Overview of the recent performance of DI-BSCCO wire[J]. Cryogenics, 2012, 52(12): 713-718. [63] WANG S L, XIA Z Z, CHEN S S, et al. The technology of fabrication & application of Bi-2223 HTS wires at InnoST[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1581-1584. [64] XIAO L Y, GU H W. The progresses of superconducting technology for power grid last decade in China[J]. Progress in Superconductivity and Cryogenics, 2015, 17(1): 1-5. [65] LI X H, ZHANG J Y, HUANG K T, et al. Electromagnetic design of high-temperature superconducting traction transformer for high-speed railway train[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-5. [66] SATO K I. Recent progress of Bi2223 HTS wires and their applications[J]. Journal of Cryogenics and Superconductivity Society of Japan, 2007, 42(10): 338-345. [67] GODEKE A, ABRAIMOV D V, ARROYO E, et al. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids[J]. Superconductor Science and Technology, 2017, 30(3): 035011. [68] YUMURA H, ASHIBE Y, ITOH H, et al. Phase II of the Albany HTS cable project[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1698-1701. [69] YAMAGUCHI S, HAMABE M, YAMAMOTO I, et al. Research activities of DC superconducting power transmission line in Chubu University[J]. Journal of Physics: Conference Series, 2008, 97: 012290. [70] YAMAGUCHI S, KAWAHARA T, HAMABE M, et al. Experiment of 200-meter superconducting DC cable system in Chubu University[J]. Physica C: Superconductivity and Its Applications, 2011, 471(21/22): 1300-1303. [71] 任安林,席海霞,信 赢.超导电缆及其应用[J].国际电力,2005(3):59-62. REN A L, XI H X, XIN Y. Superconductor cables and their applications[J]. International Electric Power for China, 2005(3): 59-62(in Chinese). |
[1] | LIN Zefeng, SUN Weixuan, LIU Tianxiang, TU Sijia, NI Zhuang, BAI Xinbo, ZHAO Zhanyi, ZHANG Jiquan, CHEN Fucong, HU Wei, FENG Zhongpei, YUAN Jie, JIN Kui. Research Progress on Superconducting Films Prepared by Pulsed Laser Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1036-1051. |
[2] | HE Dong, TONG Liang, XU Wenbo, HU Wenpeng, CHENG Dawei, XU Chongjian. Preparation of GdBa2Cu3O7-x Superconducting Films by Chemical Solution Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(10): 1814-1818. |
[3] | CHEN Li-jia;WANG Yi;HAO Shan-peng;SUO Hong-li;LI Huai-zhou;JIA Qiang;LU Dong-qi;HE Ding-yong. Mechanical Properties of Zirconia Coating Deposited by Solution Precursor Plasma Spraying [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(7): 1367-1371. |
[4] | YI Ning;SUO Hong-li;LIU Min;MA Lin;XU Yan;LI Chun-yan;WANG Tian-tian. Preparation and Properties Study of Zr Doped YBCO Thick Film by LF-MOD [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2016, 45(9): 2193-2197. |
[5] | LIU Yue;KONG Yong-fa;XU Jing-jun;Sang-Wook Cheong. Study on Magnetism Enhancement of Fe Doped YbMnO3 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(8): 2024-2027. |
[6] | LI Dong-qi;CHEN Qing-ming;GAO Xiang;YANG Sheng-an;ZHANG Hui;YANG Ning. Study on the Effect of Preparation Process on the Electrical Properties of Bi1.7Pb0.3Sr2Ca2Cu3O10 Polycrystalline [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(8): 2284-2289. |
[7] | ZHAO Chen;SHUI An-ze;LI Mei-cheng;LIU Shi-jian;YAO Jian-cheng;CHEN Qiu-qun;HUANG Shi-yao. Preparation and Properties of Ceria-Zirconia Solid Solution with Different Morphology by Complexometry [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(11): 2840-2845. |
[8] | ZHANG Bin;ZHANG Hui;MA Ji;CHEN Qing-ming;WANG Huan-ping;LIU Xiang. Preparation of Nd1.85Ce0.15CuO4-δ Precursor and Powders by Sol-gel Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(8): 2070-2074. |
[9] | ZHANG Zi-li;SUO Hong-li;WIMBUSH Stuart;KURSUMOVIC Ahmed;MAO Lei;MACMANUS-DRISCOLL Judith. Study on the Superconducting Connectivity of YBCO Platelike Powders Synthesized by a Biomimetic Method and the Effect of Oxygen Annealing on the Superconducting Connectivity [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(3): 543-549. |
[10] | TENG Hao;LI Yu-kun;LIN Hui;LI Wen-jie;HOU Xiao-rui;JIA Ting-ting;YI Qing;ZHOU Sheng-ming. Fabrication and Spectral Properties of Nd,Ce:YAG Transparent Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2010, 39(6): 1439-1442. |
[11] | GUO Lei;LEI Liang-cai;ZHANG Jun;WANG Si-yao;HAN Xiang-yan;CHU Gang. Synthesis and Characterization of Mn3O4 Nanoparticles [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2010, 39(6): 1446-1450. |
[12] | WANG Jing;Gao Zhen;CHONG Li-juan. Effect of Hydrothermal Treatment on Micromorphology of Aluminum Sulfate Hydrolysis Product [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2010, 39(6): 1524-1528. |
[13] | LIU Chang-xia;SUN Jun-long;FENG Bao-fu. Mechanical Properties and Microstructures of Al2O3 Ceramics Using Diopside as Additives [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2010, 39(6): 1549-1554. |
[14] | LV Zhao;LIU Min;YE Shuai;WU Zi-ping;XU Yan;SUO Hong-li. Formation of BaCeO3 during Preparation Process of YBCO Superconducting Layer by MOD Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2010, 39(6): 1555-1558. |
[15] | WANG Rong;SUO Hong-li;CHENG Yan-ling;LIU Min;ZHAO Yue;YE Shuai;GAO Mang-mang;ZHOU Mei-ling. Fabrication of La2Zr2O7 Thick Layers by Chemical Solution Deposition for Coated Conductors [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2010, 39(2): 396-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||