JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (9): 1796-1809.
• Reviews • Previous Articles Next Articles
ZHANG Daoyong, WANG Shurong
Received:
2021-05-06
Online:
2021-09-15
Published:
2021-10-15
CLC Number:
ZHANG Daoyong, WANG Shurong. Research Progress of Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Journal of Synthetic Crystals, 2021, 50(9): 1796-1809.
[1] 敖建平.CIGS薄膜太阳电池产业化的最新进展及发展趋势[J].人工晶体学报,2012,41(S1):189-195. AO J P. Recent progress and trends in industrialization of CIGS film solar cells[J]. Journal of Synthetic Crystals, 2012, 41(S1): 189-195(in Chinese). [2] LEE T D, EBONG A U. A review of thin film solar cell technologies and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1286-1297. [3] SONG J H, YOON J, AN Y S, et al. Power performance characteristics of transparent thin-film BIPV module depending on an installation angle[J]. Journal of the Korean Solar Energy Society, 2008: 28. [4] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. [5] SPALATU N, KRUNKS M, HIIE J. Structural and optoelectronic properties of CdCl2 activated CdTe thin films modified by multiple thermal annealing[J]. Thin Solid Films, 2017, 633: 106-111. [6] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. [7] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593. [8] NITSCHE R, SARGENT D F, WILD P. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport[J]. Journal of Crystal Growth, 1967, 1(1): 52-53. [9] SON D H, KIM S H, KIM S Y, et al. Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device[J]. Journal of Materials Chemistry A, 2019, 7(44): 25279-25289. [10] WALSH A, CHEN S Y, WEI S H, et al. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4[J]. Advanced Energy Materials, 2012, 2(4): 400-409. [11] SHIN D, SAPAROV B, MITZI D B. Photovoltaic materials: defect engineering in multinary earth-abundant chalcogenide photovoltaic materials[J]. Advanced Energy Materials, 2017, 7(11): 1602366. [12] CHEN S Y, WALSH A, YANG J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells[J]. Physical Review B, 2011, 83(12): 125201. [13] ITO K, NAKAZAWA T. Electrical and optical properties of stannite-type quaternary semiconductor thin films[J]. Japanese Journal of Applied Physics, 1988, 27(Part 1, No. 11): 2094-2097. [14] POLIZZOTTI A, REPINS I L, NOUFI R, et al. The state and future prospects of kesterite photovoltaics[J]. Energy & Environmental Science, 2013, 6(11): 3171. [15] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. [16] PRABHAKAR T, JAMPANA N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films[J]. Solar Energy Materials and Solar Cells, 2011, 95(3): 1001-1004. [17] NISHIWAKI S, KOHARA N, NEGAMI T, et al. Characterization of Cu(In, Ga)Se2/Mo interface In CIGS solar cells[J]. MRS Online Proceedings Library, 1997, 485(1): 139-144. [18] ORGASSA K, SCHOCK H W, WERNER J H. Alternative back contact materials for thin film Cu(In, Ga)Se2 solar cells[J]. Thin Solid Films, 2003, 431/432: 387-391. [19] 宋燕平.铜锌锡硫硒太阳能电池的界面钝化改性及其光电性能研究[D].长春:吉林大学,2020. SONG Y P. Investigation on the interface passivation modification for the efficient Cu2Zn Sn(S, Se)4 solar cells[D]. Changchun: Jilin University, 2020(in Chinese). [20] KATAGIRI H, JIMBO K, MAW W S, et al. Development of CZTS-based thin film solar cells[J]. Thin Solid Films, 2009, 517(7): 2455-2460. [21] KATAGIRI H, JIMBO K, MORIYA K, et al. Solar cell without environmental pollution by using CZTS thin film[C]//3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings of. May 11-18, 2003, Osaka, Japan. IEEE, 2003: 2874-2879. [22] REPINS I, BEALL C, VORA N, et al. Co-evaporated Cu2ZnSnSe4 films and devices[J]. Solar Energy Materials and Solar Cells, 2012, 101: 154-159. [23] LEE Y S, GERSHON T, GUNAWAN O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Advanced Energy Materials, 2015, 5(7): 1401372. [24] HWANG D K, KO B S, JEON D H, et al. Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S, Se)4 thin films[J]. Solar Energy Materials and Solar Cells, 2017, 161: 162-169. [25] CHALAPATHY R B V, JUNG G S, AHN B T. Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(12): 3216-3221. [26] LECHNER R, JOST S, PALM J, et al. Cu2ZnSn(S, Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors[J]. Thin Solid Films, 2013, 535: 5-9. [27] MÁRQUEZ J, NEUSCHITZER M, DIMITRIEVSKA M, et al. Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 144: 579-585. [28] CHAWLA V, CLEMENS B. Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets[C]//2012 38th IEEE Photovoltaic Specialists Conference. June 3-8, 2012, Austin, TX, USA. IEEE, 2012: 2990-2992. [29] LI J J, WANG H X, LUO M, et al. 10% Efficiency Cu2ZnSn(S, Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width[J]. Solar Energy Materials and Solar Cells, 2016, 149: 242-249. [30] YAN C, HUANG J L, SUN K W, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018, 3(9): 764-772. [31] LI J, HUANG Y, HUANG J, et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(52): e2005268. [32] HIROI H, SAKAI N, IWATA Y, et al. Impact of buffer layer on kesterite solar cells[C]//2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). June 14-19, 2015, New Orleans, LA, USA. IEEE, 2015: 1-4. [33] ESPINDOLA-RODRIGUEZ M, SANCHEZ Y, LÓPEZ-MARINO S, et al. Selenization of Cu2ZnSnS4 thin films obtained by pneumatic spray pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 45-51. [34] FRANCKEVIČIUS M, PAKTAS V, GRINCIEN G, et al. Efficiency improvement of superstrate CZTSSe solar cells processed by spray pyrolysis approach[J]. Solar Energy, 2019, 185: 283-289. [35] ENKHBAT T, KIM S, KIM J. Device characteristics of band gap tailored 10.04% efficient CZTSSe solar cells sprayed from water-based solution[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36735-36741. [36] SCRAGG J J, DALE P J, PETER L M, et al. New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material[J]. Physica Status Solidi (b), 2008, 245(9): 1772-1778. [37] SCRAGG J J, BERG D M, DALE P J. A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers[J]. Journal of Electroanalytical Chemistry, 2010, 646(1/2): 52-59. [38] CHEON K B, HWANG S K, SEO S W, et al. Roughness-controlled Cu2ZnSn(S, Se)4 thin-film solar cells with reduced charge recombination[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24088-24095. [39] SEO S W, JEON J O, SEO J W, et al. Compositional and interfacial modification of Cu2ZnSn(S, Se)4 thin-film solar cells prepared by electrochemical deposition[J]. ChemSusChem, 2016, 9(5): 439-444. [40] TODOROV T K, REUTER K B, MITZI D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(20): E156-E159. [41] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465. [42] 于 晴.高质量铜锌锡硫硒薄膜的溶液法制备及光伏器件性能研究[D].北京:中国科学院大学(中国科学院物理研究所),2020. YU Q. Preparation of high quality Cu2ZnSn(S, Se)4 film by solution method and study of the photovoltaic device performance[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2020(in Chinese). [43] LUAN H M, YAO B, LI Y F, et al. Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S, Se)4 solar cells fabricated with DMF-based solution approach[J]. Solar Energy Materials and Solar Cells, 2019, 195: 55-62. [44] HAASS S G, DIETHELM M, WERNER M, et al. 11.2% efficient solution processed kesterite solar cell with a low voltage deficit[J]. Advanced Energy Materials, 2015, 5(18): 1500712. [45] GONG Y C, ZHANG Y F, ZHU Q, et al. Identifying the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution[J]. Energy & Environmental Science, 2021, 14(4): 2369-2380. [46] WU S H, HUANG K T, CHEN H J, et al. Cu2ZnSn(SxSe1-x)4 thin film solar cell with high sulfur content (x approximately 0.4) and low Voc deficit prepared using a postsulfurization process[J]. Solar Energy Materials and Solar Cells, 2018, 175: 89-95. [47] ZHAO X Y, PAN Y N, ZUO C T, et al. Ambient air-processed Cu2ZnSn(S, Se)4 solar cells with over 12% efficiency[J]. Science Bulletin, 2021, 66(9): 880-883. [48] GUO L B, SHI J J, YU Q, et al. Coordination engineering of Cu-Zn-Sn-S aqueous precursor for efficient kesterite solar cells[J]. Science Bulletin, 2020, 65(9): 738-746. [49] MIN X, GUO L B, YU Q, et al. Enhancing back interfacial contact by in situ prepared MoO3 thin layer for Cu2ZnSnSxSe4-x solar cells[J]. Science China Materials, 2019, 62(6): 797-802. [50] WERNER M, SUTTER-FELLA C M, HAGENDORFER H, et al. Cu2ZnSn(S, Se)4 solar cell absorbers processed from Na-containing solutions in DMSO[J]. Physica Status Solidi (a), 2015, 212(1): 116-120. [51] XIN H, VORPAHL S M, COLLORD A D, et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S, Se)4 and increases photovoltaic efficiency[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 23859-23866. [52] TAI K F, FU D C, CHIAM S Y, et al. Antimony doping in solution-processed Cu2ZnSn(S, Se)4 solar cells[J]. ChemSusChem, 2015, 8(20): 3504-3511. [53] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60. [54] CHEN S Y, GONG X G, WALSH A, et al. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ2 compounds[J]. Physical Review B, 2009, 79(16): 165211. [55] COLLORD A D, HILLHOUSE H W. Germanium alloyed kesterite solar cells with low voltage deficits[J]. Chemistry of Materials, 2016, 28(7): 2067-2073. [56] HADKE S, LEVCENKO S, SAI GAUTAM G, et al. Suppressed deep traps and bandgap fluctuations in Cu2CdSnS4 solar cells with ≈8% efficiency[J]. Advanced Energy Materials, 2019, 9(45): 1902509. [57] GOKMEN T, GUNAWAN O, TODOROV T K, et al. Band tailing and efficiency limitation in kesterite solar cells[J]. Applied Physics Letters, 2013, 103(10): 103506. [58] HAGES C J, KOEPER M J, AGRAWAL R. Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying[J]. Solar Energy Materials and Solar Cells, 2016, 145: 342-348. [59] SUN R J, ZHUANG D M, ZHAO M, et al. Beyond 11% efficient Cu2ZnSn(Se, S)4 thin film solar cells by cadmium alloying[J]. Solar Energy Materials and Solar Cells, 2018, 174: 494-498. [60] SU Z H, TAN J M R, LI X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Advanced Energy Materials, 2015, 5(19): 1500682. [61] HE M R, ZHANG X, HUANG J L, et al. High efficiency Cu2ZnSn(S, Se)4 solar cells with shallow LiZn acceptor defects enabled by solution-based Li post-deposition treatment[J]. Advanced Energy Materials, 2021, 11(13): 2003783. [62] DU Y C, WANG S S, TIAN Q W, et al. Defect engineering in earth-abundant Cu2 ZnSn(S, Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells[J]. Advanced Functional Materials, 2021, 31(16): 2010325. [63] YANG K J, SIM J H, SON D H, et al. Comparison of chalcopyrite and kesterite thin-film solar cells[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 78-84. [64] LEE Y S, GERSHON T, TODOROV T K, et al. Atomic layer deposited aluminum oxide for interface passivation of Cu2ZnSn(S, Se)4Thin-film solar cells[J]. Advanced Energy Materials, 2016, 6(12): 1600198. [65] YANG K J, SON D H, SUNG S J, et al. A band-gap-graded CZTSSe solar cell with 12.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10151-10158. [66] QI Y F, KOU D X, ZHOU W H, et al. Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu, Ag)2ZnSn(S, Se)4 solar cells[J]. Energy & Environmental Science, 2017, 10(11): 2401-2410. [67] REY G, REDINGER A, SENDLER J, et al. The band gap of Cu2ZnSnSe4: effect of order-disorder[J]. Applied Physics Letters, 2014, 105(11): 112106. [68] XIE H B, LÓPEZ-MARINO S, OLAR T, et al. Impact of Na dynamics at the Cu2ZnSn(S, Se)4/CdS interface during post low temperature treatment of absorbers[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 5017-5024. [69] SARDASHTI K, HAIGHT R, GOKMEN T, et al. Impact of nanoscale elemental distribution in high-performance kesterite solar cells[J]. Advanced Energy Materials, 2015, 5(10): 1402180. [70] KRÄMMER C, HUBER C, ZIMMERMANN C, et al. Reversible order-disorder related band gap changes in Cu2ZnSn(S, Se)4 via post-annealing of solar cells measured by electroreflectance[J]. Applied Physics Letters, 2014, 105(26): 262104. [71] SCRAGG J J S, CHOUBRAC L, LAFOND A, et al. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films[J]. Applied Physics Letters, 2014, 104(4): 041911. [72] SCRAGG J J S, LARSEN J K, KUMAR M, et al. Cu-Zn disorder and band gap fluctuations in Cu2ZnSn(S, Se)4: theoretical and experimental investigations[J]. Physica Status Solidi (b), 2016, 253(2): 247-254. [73] NEUSCHITZER M, SANCHEZ Y, OLAR T, et al. Complex surface chemistry of kesterites: Cu/Zn reordering after low temperature postdeposition annealing and its role in high performance devices[J]. Chemistry of Materials, 2015, 27(15): 5279-5287. [74] TAJIMA S, ASAHI R, ISHEIM D, et al. Atom-probe tomographic study of interfaces of Cu2ZnSnS4 photovoltaic cells[J]. Applied Physics Letters, 2014, 105(9): 093901. [75] TAJIMA S, UMEHARA M, HASEGAWA M, et al. Cu2ZnSnS4 photovoltaic cell with improved efficiency fabricated by high-temperature annealing after CdS buffer-layer deposition[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(1): 14-22. [76] GAO S S, ZHANG Y, AO J P, et al. Insight into the role of post-annealing in air for high efficient Cu2ZnSn(S, Se)4 solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 182: 228-236. [77] TEETER G, HARVEY S P, JOHNSTON S. Controlling metastable native point-defect populations in Cu(In, Ga)Se2 and Cu2ZnSnSe4 materials and solar cells through voltage-bias annealing[J]. Journal of Applied Physics, 2017, 121(4): 043102. [78] DIMITRIEVSKA M, GIRALDO S, PISTOR P, et al. Raman scattering analysis of the surface chemistry of kesterites: impact of post-deposition annealing and Cu/Zn reordering on solar cell performance[J]. Solar Energy Materials and Solar Cells, 2016, 157: 462-467. [79] SU Z, LIANG G, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(32): e2000121. |
[1] | GAO Jiaqing, QU Xiaoyong, WU Xiang, GUO Yonggang, WANG Yonggang, WANG Liang, TAN Xin, YANG Xinze. Tunneling Oxidation and Passivation Process of p-Type TOPCon Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 133-138. |
[2] | WU Rui, HU Yang, TANG Rongfen, YANG Qian, WANG Xu, WU Yiyi, NIE Dengpan, WANG Huanjiang. Study of Gas-Phase Parasitic Reaction Pathways for ZnO Thin Film Grown by MOCVD [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1608-1619. |
[3] | CHENG Youliang, DU Huibin, ZHANG Zhongbao, WANG Kai. Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1629-1639. |
[4] | ZHAO Ya, ZHUANG Zhong, WEI Mengyuan, JIANG Qingsong, YANG Xiao, XUN Wei, LIU Yuhao. Effect of Sulfur-Rich Precursor Solution on Photovoltaic Performance of CuPbSbS3 Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1640-1647. |
[5] | ZHONG Qiongli, WANG Xu, MA Kui, YANG Fashun. Effect of Al Doping on the Optical Properties of β-Ga2O3 Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1352-1360. |
[6] | TANG Huazhu, XIAO Qingquan, FU Shasha, XIE Quan. Simulation on ZnS/SnS Solar Cells with Spiro-OMeTAD as Hole Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1394-1408. |
[7] | LI Haoqing, SU Yu. Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1136-1149. |
[8] | WANG Leilei, YIN Zhenhua, ZHANG Yunke, LIU Lei, CHEN Ming. First-Principles Study of Lead-Free Quaternary Thioiodides with Outstanding Optoelectronic Properties for Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 803-809. |
[9] | DAI Tongguang, TAN Xin, SONG Zhicheng, GUO Yonggang, YUAN Yajing, NI Yufeng, WANG Liang. Single-Sided Deposition of Poly-Si in TOPCon Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 818-823. |
[10] | ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran. Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 572-584. |
[11] | LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 355-371. |
[12] | ZHANG Yuchen, LI Sanbing, XU Jingjun, ZHANG Guoquan. Conductive Domain Wall and Its Applications in Lithium Niobate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 395-409. |
[13] | HE Yuxuan, WU Jiangwei, CHEN Yuping, CHEN Xianfeng. Study on Fabrication of Erbium-Doped Lithium Niobate Thin Film Based on Low Temperature Ion Exchange Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 441-448. |
[14] | CHEN Li, ZHOU Xudong, YUAN Mingrui, XIAO Huifu, TIAN Yonghui. Integrated Lithium Niobate Polarization Beam Splitter Based on a Subwavelength Grating-Assisted Directional Coupler [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 465-471. |
[15] | ZHANG Bo, SONG Zhicheng, NI Yufeng, WEI Kaifeng. Boron Doping Technology for the Front Polysilicon Layer of Full TOPCon Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 329-335. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||