[1] HUNTER K I, ANDARAARACHCHI H P, KORTSHAGEN U R. Nonthermal plasma synthesized silicon-silicon nitride core-shell nanocrystals with enhanced photoluminescence[J]. Journal of Physics D: Applied Physics, 2021, 54(50): 504005. [2] SEKAR S, LEE S. Derivation of luminescent mesoporous silicon nanocrystals from biomass rice husks by facile magnesiothermic reduction[J]. Nanomaterials, 2021, 11(3): 613. [3] ZRIR M A, KAKHIA M, ALKAFRI N. Forming Si nanocrystals on insulator by wet anisotropic etching[J]. Thin Solid Films, 2020, 696: 137766. [4] BAGANHA C C, RIBEIRO E, SILVEIRA E S, et al. Coexistence of interface states and confined electronic levels contribution for the light emission of Si nanocrystals embedded in SiO2[J]. Journal of Luminescence, 2019, 209: 291-294. [5] NI Z Y, ZHOU S, ZHAO S Y, et al. Silicon nanocrystals: unfading silicon materials for optoelectronics[J]. Materials Science and Engineering: R: Reports, 2019, 138: 85-117. [6] LU P, LI D K, CAO Y Q, et al. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications[J]. Journal of Semiconductors, 2018, 39(6): 061007. [7] LUO J W, LI S S, SYCHUGOV I, et al. Absence of redshift in the direct bandgap of silicon nanocrystals with reduced size[J]. Nature Nanotechnology, 2017, 12(10): 930-932. [8] CAO Y Q, ZHU P, LI D K, et al. Size-dependent and enhanced photovoltaic performance of solar cells based on Si quantum dots[J]. Energies, 2020, 13(18): 4845. [9] LIU X L, JI Y, LU Z B, et al. Enhanced device performance of Si nanowires/Si nanocrystals heterojunction solar cells with ultrathin Al2O3 passivation[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120: 114048. [10] CURIEL M, NEDEV N, PAZ J, et al. UV sensitivity of MOS structures with silicon nanoclusters[J]. Sensors, 2019, 19(10): 2277. [11] SAYYEDFATTAHI S J, ROSTAMI A, POULADIAN M, et al. Novel and simple solution-processed MIS ultraviolet (UV) detector based on core-shell Si/SiO2 nanocrystals[J]. Journal of Electronic Materials, 2014, 43(4): 1249-1254. [12] FUJII M, FUJII R, TAKADA M, et al. Silicon quantum dot supraparticles for fluorescence bioimaging[J]. ACS Applied Nano Materials, 2020, 3(6): 6099-6107. [13] HUANG W, HANG P J, WANG Y, et al. Zero-power optoelectronic synaptic devices[J]. Nano Energy, 2020, 73: 104790. [14] LI Y Y, WANG Y, YIN L, et al. Silicon-based inorganic-organic hybrid optoelectronic synaptic devices simulating cross-modal learning[J]. Science China Information Sciences, 2021, 64(6): 1-8. [15] WANG Y, YIN L, HUANG W, et al. Optoelectronic synaptic devices for neuromorphic computing[J]. Advanced Intelligent Systems, 2021, 3(1): 2000099. [16] CHEN J M, LI D K, ZHANG Y Y, et al. Comparative study on P and B doped nano-crystalline Si multilayers[J]. Applied Surface Science, 2020, 529: 146971. [17] LI D K, XU J, ZHANG P, et al. Doping effect in Si nanocrystals[J]. Journal of Physics D: Applied Physics, 2018, 51(23): 233002. [18] MARRI I, DEGOLI E, OSSICINI S. Doped and codoped silicon nanocrystals: the role of surfaces and interfaces[J]. Progress in Surface Science, 2017, 92(4): 375-408. [19] OLIVA-CHATELAIN B L, TICICH T M, BARRON A R. Doping silicon nanocrystals and quantum dots[J]. Nanoscale, 2016, 8(4): 1733-1745. [20] MA J, WEI S H, NEALE N R, et al. Effect of surface passivation on dopant distribution in Si quantum dots: the case of B and P doping[J]. Applied Physics Letters, 2011, 98(17): 173103. [21] OSSICINI S, DEGOLI E, IORI F, et al. Simultaneously B- and P-doped silicon nanoclusters: formation energies and electronic properties[J]. Applied Physics Letters, 2005, 87(17): 173120. [22] LU P, MU W, XU J, et al. Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication[J]. Sci Rep, 2016, 6: 22888. [23] SHAN D, JI Y, LI D K, et al. Enhanced carrier mobility in Si nano-crystals via nanoscale phosphorus doping[J]. Applied Surface Science, 2017, 425: 492-496. [24] CHEN K J, HUANG X F, XU J, et al. Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures[J]. Applied Physics Letters, 1992, 61(17): 2069-2071. [25] RUI Y J, CHEN D Y, XU J, et al. Effects of hydrogen plasma annealing on the luminescence from a-Si:H/SiO2 and nc-Si/SiO2 multilayers[J]. Applied Surface Science, 2007, 253(21): 8647-8651. [26] FUJII M, SUGIMOTO H, HASEGAWA M, et al. Silicon nanocrystals with high boron and phosphorus concentration hydrophilic shell—Raman scattering and X-ray photoelectron spectroscopic studies[J]. Journal of Applied Physics, 2014, 115(8): 084301. [27] GUERRA R, OSSICINI S. Preferential positioning of dopants and co-dopants in embedded and freestanding Si nanocrystals[J]. Journal of the American Chemical Society, 2014, 136(11): 4404-4409. [28] NOMOTO K, SUGIMOTO H, BREEN A, et al. Atom probe tomography analysis of boron and/or phosphorus distribution in doped silicon nanocrystals[J]. The Journal of Physical Chemistry C, 2016, 120(31): 17845-17852. [29] LI D K, JIANG Y C, ZHANG P, et al. The phosphorus and boron co-doping behaviors at nanoscale in Si nanocrystals/SiO2 multilayers[J]. Applied Physics Letters, 2017, 110(23): 233105. [30] NI Z Y, PI X D, ZHOU S, et al. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals[J]. Advanced Optical Materials, 2016, 4(5): 700-707. [31] LI D, JIANG Y, LIU J, et al. Modulation of surface states by phosphorus to improve the optical properties of ultra-small Si nanocrystals[J]. Nanotechnology, 2017, 28(47): 475704. [32] LU P, LI D K, ZHANG P, et al. Time-resolved and temperature-dependent photoluminescence study on phosphorus doped Si quantum dots/SiO2 multilayers with ultra-small dot sizes[J]. Optical Materials Express, 2016, 6(10): 3233. |