[1] FARAJIAN A A, BELOSLUDOV R V, MIZUSEKI H, et al. Gate-induced switching and negative differential resistance in a single-molecule transistor: emergence of fixed and shifting states with molecular length[J]. The Journal of Chemical Physics, 2007, 127(2): 024901. [2] FU H H, DU G F, WU D D, et al. Spin-orbit coupling induced robust spin-Seebeck effect and pure thermal spin currents in achiral molecule systems[J]. Physical Review B, 2019, 100(8): 085407. [3] GU L, FU H H, WU R Q. How to control spin-Seebeck current in a metal-quantum dot-magnetic insulator junction[J]. Physical Review B, 2016, 94(11): 115433. [4] KAUR M, SAWHNEY R S, ENGLES D. Non-equilibrium tunneling through Au-C20-Au molecular bridge using density functional theory-non-equilibrium Green function approach[J]. Journal of Materials Research, 2016, 31(14): 2025-2034. [5] KAUR M, SAWHNEY R S, ENGLES D. Ab-initio molecular characterization of nonclassical fullerenes cluster using two probe approach[J]. Journal of Materials Research, 2017, 32(2): 414-425. [6] TAN X Y, WU D D, LIU Q B, et al. Spin caloritronics in armchair silicene nanoribbons with sp3 and sp2-type alternating hybridizations[J]. Journal of Physics Condensed Matter, 2018, 30(35): 355303. [7] TAN X Y, ZHANG L N, LIU L L. Bipolar magnetic semiconductor properties and spin-dependent Seebeck effects induced by nanoscale graphene domains doped into armchair boron nitride nanoribbons[J]. Chemical Physics Letters, 2020, 748: 137386. [8] WU D D, DU G F, FU H H. Spin-dependent Seebeck effect, and spin-filtering and diode effects in magnetic boron-nitrogen nanotube heterojunctions[J]. Journal of Materials Chemistry C, 2020, 8(13): 4486-4492. [9] WU D D, FU H H, LIU Q B, et al. Magnetic nanotubes: a new material platform to realize a robust spin-Seebeck effect and a perfect thermal spin-filtering effect[J]. Physical Review B, 2018, 98(11): 115422. [10] WU D D, FU H H, LIU Q B, et al. How to realize the spin-Seebeck effect with a high spin figure of merit in magnetic boron-nitrogen nanoribbon and nanotube structures?[J]. Journal of Materials Chemistry C, 2018, 6(39): 10603-10610. [11] WU D D, LIU Q B, FU H H, et al. How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?[J]. Nanoscale, 2017, 9(46): 18334-18342. [12] XU K, HUANG J, GUAN Z Y, et al. Transport spin polarization of magnetic C28 molecular junctions[J]. Chemical Physics Letters, 2012, 535: 111-115. [13] ZHANG Z Q, YANG Y R, FU H H, et al. Design of spin-Seebeck diode with spin semiconductors[J]. Nanotechnology, 2016, 27(50): 505201. [14] ZHENG X, LU W, ABTEW T A, et al. Negative differential resistance in C60-based electronic devices[J]. ACS Nano, 2010, 4(12): 7205-7210. [15] FUNASAKA H, SUGIYAMA K, YAMAMOTO K, et al. Synthesis of actinide carbides encapsulated within carbon nanoparticles[J]. Journal of Applied Physics, 1995, 78(9): 5320-5324. [16] GUO T, DIENER M D, CHAI Y, et al. Uranium stabilization of C28: a tetravalent fullerene[J]. Science, 1992, 257(5077): 1661-1664. [17] MONTIEL F, MIRALRIO A, SANSORES L E, et al. Complexes of graphene nanoribbons with porphyrins and metal-encapsulated C28 as molecular rectifiers: a theoretical study[J]. Molecular Simulation, 2017, 43(9): 706-713. [18] ENYASHIN A, GEMMING S, HEINE T, et al. C28 fullerites-structure, electronic properties and intercalates[J]. Physical Chemistry Chemical Physics, 2006, 8(28): 3320-3325. [19] ZHANG F P, LU Q M, ZHANG X, et al. First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide[J]. Journal of Alloys and Compounds, 2011, 509(2): 542-545. [20] ZHANG F P, LU Q M, ZHANG X, et al. Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study[J]. Journal of Physics and Chemistry of Solids, 2013, 74(12): 1859-1864. [21] ZHANG F P, SUN Y, WANG H H, et al. Regulated microarchitecture, spin polarization state, and observed charge transfers for cerium boride CeB6 under electrical Field[J]. Materials Today Communications, 2021, 26: 101877. [22] 张飞鹏,施加利,张静文,等.Ca位p型掺杂Ca2Co2O5晶体材料电子状态的理论研究[J].分子科学学报,2019,35(2):102-109. ZHANG F P, SHI J L, ZHANG J W, et al. Theoretical study of electronic states of Ca site p-doped Ca2Co2O5 crystalline material[J]. Journal of Molecular Science, 2019, 35(2): 102-109(in Chinese). [23] PAHUJA A, SRIVASTAVA S. Electronic transport properties of doped C28 fullerene[J]. Physics Research International, 2014, 2014: 1-7. [24] LI Q, YANG Y, REN D, et al. Thermal spin transport properties of magnetic C28 monomolecular devices[J]. Journal of optoelectronic and advanced materials, 2021, 23(5-6): 299-304. [25] GUO T, SMALLEY R E, SCUSERIA G E. Ab initio theoretical predictions of C28, C28H4, C28F4, (Ti@C28)H4, and M@C28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn)[J]. The Journal of Chemical Physics, 1993, 99(1): 352-359. [26] QUANTUMATK. version P-2019.03[M]. https://www.synopsys.com/silicon/quantumatk.html [27] SMIDSTRUP S, MARKUSSEN T, VANCRAEYVELD P, et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools[J]. Journal of Physics: Condensed Matter, 2020, 32(1): 015901. [28] 霍新霞,王 畅,张秀梅,等.Au电极连接富勒烯C32分子的电子结构与传输特性[J].物理学报,2010,59(7):4955-4960. HUO X X, WANG C, ZHANG X M, et al. Electron structure and electron conductance of fullerene C32 with Au electrodes[J]. Acta Physica Sinica, 2010, 59(7): 4955-4960(in Chinese). [29] 张鸿宇,王利光,张秀梅,等.富勒烯C20分子器件的电子结构和传导特性[J].物理学报,2008,57(10):6271-6276. ZHANG H Y, WANG L G, ZHANG X M, et al. Electronic structure and conductance of fullerene C20[J]. Acta Physica Sinica, 2008, 57(10): 6271-6276(in Chinese). [30] MEYER J, BREDOW T, TEGENKAMP C, et al. Thiol and thiolate bond formation of ferrocene-1, 1-dithiol to a Ag(111) surface[J]. The Journal of Chemical Physics, 2006, 125(19): 194705. [31] STOKBRO K, TAYLOR J, BRANDBYGE M, et al. Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds[J]. Computational Materials Science, 2003, 27(1/2): 151-160. [32] IMRY Y, LANDAUER R. Conductance viewed as transmission[J]. Reviews of Modern Physics, 1999, 71(2): S306-S312. |