[1] LEI Z T, OKUNEV A, ZHU C Q, et al. Imaging of microdefects in ZnGeP2 single crystals by X-ray topography[J]. Journal of Crystal Growth, 2020, 534: 125487. [2] LEI Z T, OKUNEV A O, ZHU C Q, et al. Photoelasticy method for study of structural imperfection of ZnGeP2 crystals[J]. Journal of Crystal Growth, 2016, 450: 34-38. [3] HULME K F. Nonlinear optical crystals and their applications[J]. Reports on Progress in Physics, 1973, 36(5): 497-540. [4] 杨春晖,雷作涛,朱崇强,等.中远红外非线性光学晶体生长及其应用[C]//第十七届全国晶体生长与材料学术会议摘要集.中国硅酸盐学会晶体生长与材料分会,2015:1. YANG C H, LEI Z T, ZHU C Q, et al. Growth and application of mid-far infrared nonlinear optical crystals[C]//Summary of the 17th National Conference on crystal growth and materials. rystal growth and materials branch of China Silicate Society, 2015: 1. [5] 贾 宁,王善朋,陶绪堂.中远红外非线性光学晶体研究进展[J].物理学报,2018,67(24):7-18. JIA N, WANG S P, TAO X T. Research progress of mid-far infrared nonlinear optical crystals[J]. Acta Physica Sinica, 2018, 67(24): 7-18(in Chinese). [6] LEI Z T, OKUNEV A, ZHU C Q, et al. Low-angle boundaries in ZnGeP2 single crystals[J]. Journal of Applied Crystallography, 2018, 51(2): 361-367. [7] IONIN A A, KINYAEVSKIY I O, KLIMACHEV Y M, et al. Temperature phase-matching tuning of nonlinear ZnGeP2 crystal for frequency conversion under noncritical spectral phase-matching[J]. Infrared Physics & Technology, 2019, 102: 103009. [8] HE G J, ROZAHUN I, LI Z, et al. Size effect and identified superior functional units enhancing second harmonic generation responses on the Ⅱ-Ⅳ-V2 type nonlinear optical crystals[J]. Chemical Physics, 2019, 518: 101-106. [9] 陈 毅,刘高佑,王瑞雪,等.非线性晶体应用于中长波红外固体激光器的研究进展[J].人工晶体学报,2020,49(8):1379-1395. CHEN Y, LIU G Y, WANG R X, et al. Research progress of nonlinear crystal applied in mid- and long-wave infrared solid-state laser[J]. Journal of Synthetic Crystals, 2020, 49(8): 1379-1395(in Chinese). [10] 刘高佑,魏迪生,陈 毅,等.2 μm单掺Ho固体激光器及ZnGeP2晶体应用于中长波输出的研究进展[J].红外与激光工程,2020,49(12):134-140. LIU G Y, WEI D S, CHEN Y, et al. Research progress of 2 μm Ho single-doped solid laser and application of ZnGeP2 on middle-long-wave infrared(Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 134-140(in Chinese). [11] LI Y Y, YANG K, LIU G Y, et al. A 1 kHz Fe: znse laser gain-switched by a ZnGeP2 optical parametric oscillator at 77 K[J]. Chinese Physics Letters, 2019, 36(7): 43-46. [12] 魏 磊,吴德成,刘 东,等.Ho∶YLF激光泵浦的长波红外ZnGeP2光参量振荡器[J].中国激光,2021,48(1):42-48. WEI L, WU D C, LIU D, et al. Long-wave infrared ZnGeP2 optical parametric oscillator pumped by Ho∶YLF laser[J]. Chinese Journal of Lasers, 2021, 48(1): 42-48(in Chinese). [13] DAVID N NIKOGOSYAN. Nonlinear optical crystals: a complete survey[M]. New York: Springer-Verlag, 2005. [14] 卞进田,叶 庆,孙晓泉. ZnGeP2 OPO产生4.3 μm波段窄线宽激光实验研究[J].国防科技大学学报, 2018, 40(4):9-14. BIAN J T, YE Q, SUN X Q. ZnGeP2 optical oscillator 4.3 μm laser with narrow line-width[J]. Journal of National University of Defense Technology, 2018, 40(4):9-14. [15] KUDELSKI A. Analytical applications of Raman spectroscopy[J]. Talanta, 2008, 76(1): 1-8. [16] 徐悟生,彭明林,杨春晖.8英寸氟化钙单晶生长[J].人工晶体学报,2021,50(3):407-409. XU W S, PENG M L, YANG C H. Growth of 8-inch CaF2 single crystal[J]. Journal of Synthetic Crystals, 2021, 50(3): 407-409(in Chinese). [17] 袁泽锐,窦云巍,陈 莹,等.大尺寸ZnGeP2单晶生长与大尺寸晶体器件制备[J].人工晶体学报,2020,49(8):1491-1493. YUAN Z R, DOU Y W, CHEN Y, et al. Growth of large ZnGeP2 single crystals and fabrication of large ZnGeP2 crystal devices[J]. Journal of Synthetic Crystals, 2020, 49(8): 1491-1493(in Chinese). [18] 黄呈辉,黄见洪,张 戈,等.一种精确计算光学材料吸收系数的方法[J].激光杂志,2001,22(6):45-46. HUANG C H, HUANG J H, ZHANG G, et al. A method for accurate calculation of the absorption coefficients of optical materials[J]. Laser Journal, 2001, 22(6): 45-46(in Chinese). [19] GIANNOZZI P, BARONI S, BONINI N, et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials[J]. Journal of Physics Condensed Matter, 2009, 21(39): 395502. [20] CHUCHUPAL S V, KOMANDIN G A, ZHUKOVA E S, et al. Mechanisms of loss formation in nonlinear optical crystals ZnGeP2 in the terahertz frequency range[J]. Physics of the Solid State, 2014, 56(7): 1391-1396. [21] BETTINI M, MILLER A. Optical phonons in ZnGeP2 and CdGeP2[J]. Physica Status Solidi (b), 1974, 66(2): 579-586. [22] SHPORTKO K V. Optical phonon behaviors in ZnGeP2 single crystals from temperature dependent far-infrared reflectance spectra[J]. Vibrational Spectroscopy, 2015, 80: 1-5. [23] 岳亚楠,王信伟.基于拉曼散射的传热测量和分析[J].上海第二工业大学学报,2011,28(3):183-191. YUE Y N, WANG X W. Review on Raman-based thermal characterization and analysis[J]. Journal of Shanghai Second Polytechnic University, 2011, 28(3): 183-191(in Chinese). [24] YAN F W, GAO H Y, ZHANG H X, et al. Temperature dependence of the Raman-active modes in the nonpolar a-plane GaN film[J]. Journal of Applied Physics, 2007, 101(2): 023506. [25] KLEMENS P G. Anharmonic decay of optical phonons[J]. Physical Review, 1966, 148(2): 845-848. [26] 黄 昆.高等学校教材 固体物理学[M].北京:高等教育出版社,1988:137-148. HUANG K. Teaching Materials on Institutions. Solid state physics[M]. Beijing: Higher Education Press, 1988: 137-148. [27] 袁亦方.锌基黄铜矿ZnXP2(X=Si,Ge,Sn)的高压物性研究[D].合肥:中国科学技术大学,2021. YUAN Y F. Investigation on the physical properties of zinc-based chalcopyrite ZnXP2(X=Si, Ge, Sn) under high pressure[D]. Hefei: University of Science and Technology of China, 2021(in Chinese). [28] XIE H, FANG S H, ZHAO H, et al. Quasiparticle effects on the linear and nonlinear susceptibility of ZnGeP2[J]. RSC Advances, 2019, 9(61): 35771-35779. [29] GRIBENYUKOV A I, DYOMIN V V, OLSHUKOV A S, et al. Investigation of the process of optical damage of ZnGeP2 crystals using digital holography[J]. Russian Physics Journal, 2019, 61(11): 2042-2052. [30] LIU M D, ZHAO B J, CHEN B J, et al. Research of thermodynamic properties of mid-infrared single crystal ZnGeP2[J]. Materials Science in Semiconductor Processing, 2018, 79: 161-164. |