[1] YOLE. Power SiC: materials, devices and applications 2020[R]. 2020. [2] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. [3] 彭 燕,陈秀芳,谢雪健,等.半绝缘碳化硅单晶衬底的研究进展[J].人工晶体学报,2021,50(4):619-628. PENG Y, CHEN X F, XIE X J, et al. Research progress of semi-insulating silicon carbide single crystal substrate[J]. Journal of Synthetic Crystals, 2021, 50(4): 619-628(in Chinese). [4] BLEVINS J D. Development of a world class silicon carbide substrate manufacturing capability[J]. IEEE Transactions on Semiconductor Manufacturing, 2020, 33(4): 539-545. [5] CHEN Q S, ZHANG H, MA R H, et al. Modeling of transport processes and kinetics of silicon carbide bulk growth[J]. Journal of Crystal Growth, 2001, 225(2/3/4): 299-306. [6] MA R H, CHEN Q S, ZHANG H, et al. Modeling of silicon carbide crystal growth by physical vapor transport method[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 352-359. [7] GAO B, CHEN X J, NAKANO S, et al. Analysis of SiC crystal sublimation growth by fully coupled compressible multi-phase flow simulation[J]. Journal of Crystal Growth, 2010, 312(22): 3349-3355. [8] 刘 熙,陈博源,陈之战,等.原料空隙率对6H-SiC晶体生长初期的影响[J].无机材料学报,2010,25(2):177-180. LIU X, CHEN B Y, CHEN Z Z, et al. Effects of the porosity of the source materials on the initial growth of 6H-SiC crystal[J]. Journal of Inorganic Materials, 2010, 25(2): 177-180(in Chinese). [9] LIU X, CHEN B Y, SONG L X, et al. The behavior of powder sublimation in the long-term PVT growth of SiC crystals[J]. Journal of Crystal Growth, 2010, 312(9): 1486-1490. [10] SUDARSHAN T S, MAXIMENKO S I. Bulk growth of single crystal silicon carbide[J]. Microelectronic Engineering, 2006, 83(1): 155-159. [11] SHIRAMOMO T, GAO B, MERCIER F, et al. Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory[J]. Journal of Crystal Growth, 2012, 352(1): 177-180. [12] NAKANO T, SHINAGAWA N, YABU M, et al. Formation and multiplication of basal plane dislocations during physical vapor transport growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2019, 516: 51-56. [13] GAO B, KAKIMOTO K. Optimization of power control in the reduction of basal plane dislocations during PVT growth of 4H-SiC single crystals[J]. Journal of Crystal Growth, 2014, 392: 92-97. [14] RENGARAJAN V, BROUHARD B K, NOLAN M C, et al. Axial gradient transport growth process and apparatus utilizing resistive heating: US9228274[P]. 2016-01-05. [15] XU X P, ZWIEBACK I, GUPTA A K, et al. Large diameter silicon carbide single crystals and apparatus and method of manufacture thereof: US11035054[P]. 2021-06-15. [16] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001. [17] LIU L H, EDGAR J H. Transport effects in the sublimation growth of aluminum nitride[J]. Journal of Crystal Growth, 2000, 220(3): 243-253. [18] WANG X L, CAI D, ZHANG H. A novel method to increase the growth rate in sublimation crystal growth of advanced materials[J]. International Journal of Heat and Mass Transfer, 2007, 50(7/8): 1221-1230. [19] WANG X L, CAI D, ZHANG H. Increase of SiC sublimation growth rate by optimizing of powder packaging[J]. Journal of Crystal Growth, 2007, 305(1): 122-132. [20] CHEN Q S, ZHANG H, PRASAD V, et al. Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals[J]. Journal of Heat Transfer, 2001, 123(6): 1098-1109. [21] MA R H, ZHANG H, HA S, et al. Integrated process modeling and experimental validation of silicon carbide sublimation growth[J]. Journal of Crystal Growth, 2003, 252(4): 523-537. [22] MA R H, ZHANG H, DUDLEY M, et al. Thermal system design and dislocation reduction for growth of wide band gap crystals: application to SiC growth[J]. Journal of Crystal Growth, 2003, 258(3/4): 318-330. [23] WU B, ZHANG H. Transport phenomena in an aluminum nitride induction heating sublimation growth system[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/15/16): 2989-3001. [24] CAI D, ZHENG L L, ZHANG H, et al. Modeling of gas phase and surface reactions in an aluminum nitride growth system[J]. Journal of Crystal Growth, 2006, 293(1): 136-145. [25] INUI F, GAO B, NAKANO S, et al. Numerical analysis of the velocity of SiC growth by the top seeding method[J]. Journal of Crystal Growth, 2012, 348(1): 71-74. [26] KULIK A V, BOGDANOV M V, KARPOV S Y, et al. Theoretical analysis of the mass transport in the powder charge in long-term bulk SiC growth[J]. Materials Science Forum, 2004, 457/458/459/460: 67-70. [27] PALMOUR J W. Silicon carbide materials and devices for power switching applications[R]. Wolfspeed, A Cree Company, 2019. [28] SiC Materials Products[EB/OL]. Wolfspeed. https://www.wolfspeed.com/products/materials/ [29] Silicon Carbide Substrates Products[EB/OL]. Ⅱ-Ⅵ Incorporated. https://ii-vi.com/silicon-carbide-substrates/ [30] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world's first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088. [31] 罗 昊,张序清,杨德仁,等.碳化硅单晶生长用高纯碳化硅粉体的研究进展[J].人工晶体学报,2021,50(8):1562-1574. LUO H, ZHANG X Q, YANG D R, et al. Research progress on high-purity SiC powder for single crystal SiC growth[J]. Journal of Synthetic Crystals, 2021, 50(8): 1562-1574(in Chinese). [32] CHOI J W, KIM J G, JANG B K, et al. Modified hot-zone design for large diameter 4H-SiC single crystal growth[J]. Materials Science Forum, 2019, 963: 18-21. [33] GAO W M, KONG L X, HODGSON P D. Computational simulation of gas flow and heat transfer near an immersed object in fluidized beds[J]. Advances in Engineering Software, 2007, 38(11/12): 826-834. [34] WANG X L, ZUNJARRAO S C, SINGH R P, et al. Advanced model of silicon carbide based uranium ceramic nuclear fuel production[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(2): 286-293. [35] CHOUROU K, ANIKIN M, BLUET J M, et al. Modelling of SiC sublimation growth process: analyses of macrodefects formation[J]. Materials Science and Engineering: B, 1999, 61/62: 82-85. [36] TAIROV Y M. Growth of bulk SiC[J]. Materials Science and Engineering: B, 1995, 29(1/2/3): 83-89. [37] DROWART J, DE MARIA G, INGHRAM M G. Thermodynamic study of SiC utilizing a mass spectrometer[J]. The Journal of Chemical Physics, 1958, 29(5): 1015-1021. [38] LILOV S K. Study of the equilibrium processes in the gas phase during silicon carbide sublimation[J]. Materials Science and Engineering: B, 1993, 21(1): 65-69. [39] MA R H. Modeling and design of PVT growth of silicon carbide crystals[D]. New York: State University of New York at Stony Brook, 2003. [40] ARIYAWONG K. Process modeling for the growth of SiC using PVT and TSSG methods[D]. Grenoble: Université Grenoble Alpes, 2015. [41] STEINER J, ARZIG M, DENISOV A, et al. Impact of varying parameters on the temperature gradients in 100 mm silicon carbide bulk growth in a computer simulation validated by experimental results[J]. Crystal Research and Technology, 2020, 55(2): 1900121. [42] MA R H, ZHANG H, PRASAD V, et al. Growth kinetics and thermal stress in the sublimation growth of silicon carbide[J]. Crystal Growth & Design, 2002, 2(3): 213-220. |