[1] RAMASAMY P, MANIVASAKAN P, KIM J. Phase controlled synthesis of SnSe and SnSe2 hierarchical nanostructures made of single crystalline ultrathin nanosheets[J]. CrystEngComm, 2015, 17(4): 807-813. [2] YU P, YU X C, LU W L, et al. Fast photoresponse from 1T tin diselenide atomic layers[J]. Advanced Functional Materials, 2016, 26(1): 137-145. [3] ZHOU X, GAN L, TIAN W M, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Advanced Materials, 2015, 27(48): 8035-8041. [4] SONG H S, LI S L, GAO L, et al. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits[J]. Nanoscale, 2013, 5(20): 9666. [5] AHN J H, LEE M J, HEO H, et al. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals[J]. Nano Letters, 2015, 15(6): 3703-3708. [6] NGUYEN T M H, NGUYEN Q, DUONG A T, et al. Growth and electrical properties of SnS1-xSex(0≤x≤1) single crystals grown using the temperature gradient method[J]. Journal of the Korean Physical Society, 2021, 78(11): 1095-1100. [7] SINGH N K, BATHULA S, GAHTORI B, et al. The effect of doping on thermoelectric performance of p-type SnSe: promising thermoelectric material[J]. Journal of Alloys and Compounds, 2016, 668: 152-158. [8] BARRIOS-SALGADO E, NAIR M T S, NAIR P K. Thin films of n-type SnSe2 produced from chemically deposited p-type SnSe[J]. Thin Solid Films, 2016, 598: 149-155. [9] CHANG Y, RUAN M, LI F, et al. Synthesis process and thermoelectric properties of the layered crystal structure SnS2[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(7): 5425-5433. [10] HAN X, XING J, XU H, et al. Remarkable improved photoelectric performance of SnS2 field-effect transistor with Au plasmonic nanostructures[J]. Nanotechnology, 2020, 31(21): 215201. [11] FU Y, GOU G Y, WANG X W, et al. High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets[J]. Applied Physics A, 2017, 123(4): 1-8. [12] GUO C, GUO W L, XU H, et al. Ultrasensitive ambient-stable SnSe2-based broadband photodetectors for room-temperature IR/THz energy conversion and imaging[J]. 2D Materials, 2020, 7(3): 035026. [13] YU X C, ZHU J, ZHANG Y H, et al. SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors[J]. Chemical Communications, 2012, 48(27): 3324-3326. [14] BAI Y, ZONG X, YU H, et al. Scalable low-cost SnS2 nanosheets as counter electrode building blocks for dye-sensitized solar cells[J]. Chemistry-A European Journal, 2014, 20(28): 8670-8676. [15] ZHONG H X, YANG G Z, SONG H W, et al. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: excellent energy storage, catalysis, photoconduction, and field-emitting performances[J]. The Journal of Physical Chemistry C, 2012, 116(16): 9319-9326. [16] LIU C Y, HUANG Z W, WANG D H, et al. Dynamic Ag+-intercalation with AgSnSe2 nano-precipitates in Cl-doped polycrystalline SnSe2 toward ultra-high thermoelectric performance[J]. Journal of Materials Chemistry A, 2019, 7(16): 9761-9772. [17] WU S H, YANG H Q, WU Z S, et al. Enhancement of thermoelectric performance of layered SnSe2 by synergistic modulation of carrier concentration and suppression of lattice thermal conductivity[J]. ACS Applied Energy Materials, 2019, 2(12): 8481-8490. [18] GUO C L, TIAN Z, XIAO Y J, et al. Field-effect transistors of high-mobility few-layer SnSe2[J]. Applied Physics Letters, 2016, 109(20): 203104. [19] CHOI M, LIM D, SERGEEVICH A S, et al. The post annealing to control the number of layers of 2D MoS2 and SnS2[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(11): 11658-11661. [20] SEO J W, JANG J T, PARK S W, et al. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries[J]. Advanced Materials, 2008, 20(22): 4269-4273. [21] ZHOU J H, XUE K, LIU Y D, et al. Highly sensitive NO2 response and abnormal P-N sensing transition with ultrathin Mo-doped SnS2 nanosheets[J]. Chemical Engineering Journal, 2021, 420: 127572. [22] SU G X, HADJIEV V G, LOYA P E, et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application[J]. Nano Letters, 2015, 15(1): 506-513. [23] FU Q G, MO H X, OSTRIKOV K K, et al. Controllable synthesis of SnS2 flakes and MoS2/SnS2 heterostructures by confined-space chemical vapor deposition[J]. CrystEngComm, 2021, 23(13): 2563-2571. [24] KIM M, SEO J, KIM J, et al. High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics[J]. ACS Nano, 2021, 15(2): 3038-3046. [25] WANG J, XU X, CHENG T, et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nature Nanotechnology, 2022, 17(1): 33-38. [26] ARYA C, DE SILVA K K H, YOSHIMURA M. Adlayer-free large-area single-crystal CVD graphene growth on copper[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(24): 21821-21831. [27] LEE S, JUNG J E, KIM H G, et al. Γ-GeSe: a new hexagonal polymorph from group Ⅳ-Ⅵ monochalcogenides[J]. Nano Letters, 2021, 21(10): 4305-4313. [28] FAN C, LI Y, LU F Y, et al. Wavelength dependent UV-Vis photodetectors from SnS2 flakes[J]. RSC Advances, 2016, 6(1): 422-427. [29] HUANG Y, XU K, WANG Z X, et al. Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties[J]. Nanoscale, 2015, 7(41): 17375-17380. [30] HUANG Y, SUTTER E, SADOWSKI J T, et al. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics[J]. ACS Nano, 2014, 8(10): 10743-10755. [31] WANG Y Y, CHEN D R, WU J K, et al. Two-dimensional mechano-thermoelectric heterojunctions for self-powered strain sensors[J]. Nano Letters, 2021, 21(16): 6990-6997. [32] DUAN X D, WANG C, FAN Z, et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties[J]. Nano Letters, 2016, 16(1): 264-269. [33] PERUMAL P, ULAGANATHAN R K, SANKAR R, et al. Ultra-thin layered ternary single crystals[Sn(SxSe1-x)2]with bandgap engineering for high performance phototransistors on versatile substrates[J]. Advanced Functional Materials, 2016, 26(21): 3630-3638. [34] PAN T S, DE D, MANONGDO J, et al. Field effect transistors with layered two-dimensional SnS2-xSex conduction channels: effects of selenium substitution[J]. Applied Physics Letters, 2013, 103(9): 093108. [35] JULIEN C, EDDRIEF M, SAMARAS I, et al. Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals[J]. Materials Science and Engineering: B, 1992, 15(1): 70-72. [36] DU L N, WANG C, FANG J Z, et al. A ternary SnS1.26Se0.76 alloy for flexible broadband photodetectors[J]. RSC Advances, 2019, 9(25): 14352-14359. [37] BERKDEMIR A, GUTIÉRREZ H R, BOTELLO-MÉNDEZ A R, et al. Identification of individual and few layers of WS2 using Raman Spectroscopy[J]. Scientific Reports, 2013, 3: 1755. [38] CONG C X, SHANG J Z, WU X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136. [39] SMITH A J, MEEK P E, LIANG W Y. Raman scattering studies of SnS2 and SnSe2[J]. Journal of Physics C: Solid State Physics, 1977, 10(8): 1321-1323. |