[1] BRANDT R E, KURCHIN R C, HOYE R L Z, et al. Investigation of bismuth triiodide (BiI3) for photovoltaic applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4297-4302. [2] OWENS A, PEACOCK A. Compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 531(1/2): 18-37. [3] GARG A, TOMAR M, GUPTA V. Optical constants of BiI3 polycrystalline thin films with potential applications in X-ray detectors and photovoltaic cell[C]//Advanced Functional Materials and Devices, 2022. [4] WU C C, ZHANG Q H, LIU G H, et al. From Pb to Bi: a promising family of Pb-free optoelectronic materials and devices[J]. Advanced Energy Materials, 2020, 10(13): 1902496. [5] CHANG P H, LI C S, FU F Y, et al. Ultrasensitive photoresponsive devices based on graphene/BiI3 van der Waals epitaxial heterostructures[J]. Advanced Functional Materials, 2018, 28(23): 1800179. [6] LEHNER A J, WANG H B, FABINI D H, et al. Electronic structure and photovoltaic application of BiI3[J]. Applied Physics Letters, 2015, 107(13): 131109. [7] ARISHIMA S, MURATA K, SAKAMOTO R, et al. Evaporation-rate and substrate-temperature dependence of direct exciton transitions in BiI3 thin films formed by hot-wall technique on Al2O3 substrates[J]. Physica Status Solidi (b), 2018, 255(11): 1800092. [8] COUTINHO N F, CUCATTI S, MERLO R B, et al. The thermomechanical properties of thermally evaporated bismuth triiodide thin films[J]. Scientific Reports, 2019, 9: 11785. [9] MENG Y H, MAGRUDER B R, HILLHOUSE H W. On interface recombination, series resistance, and absorber diffusion length in BiI3 solar cells[J]. Journal of Applied Physics, 2021, 129(13): 133101. [10] BANIK A, BOHANNAN E W, SWITZER J A. Epitaxial electrodeposition of BiI3 and topotactic conversion to highly ordered solar light-absorbing perovskite (CH3NH3)3Bi2I9[J]. Chemistry of Materials, 2020, 32(19): 8367-8372. [11] TAO J H, HU X B, XUE J J, et al. Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 197: 1-6. [12] PAN Y L, HU X B, GUO Y X, et al. Vapor transport deposition of highly efficient Sb2(S, Se)3 solar cells via controllable orientation growth[J]. Advanced Functional Materials, 2021, 31(28): 2101476. [13] LIN L, BOOPATHI K M, DING J, et al. NbSex interlayers decrease interfacial recombination in BiI3-based hybrid solar cells[J]. Flat Chem, 2017, 5: 18-24. [14] MU D, ZHOU W, LIU Y D, et al. Resolving the intrinsic bandgap and edge effect of BiI3 film epitaxially grown on graphene[J]. Materials Today Physics, 2021, 20: 100454. [15] PODRAZA N J, QIU W, HINOJOSA B B, et al. Band gap and structure of single crystal BiI3: resolving discrepancies in literature[J]. Journal of Applied Physics, 2013, 114(3): 033110. [16] ZHU Y Y, ZHANG Q P, KAM M, et al. Vapor phase fabrication of three-dimensional arrayed BiI3 nanosheets for cost-effective solar cells[J]. InfoMat, 2020, 2(5): 975-983. [17] YASUNAMI T, NAKAMURA M, INAGAKI S, et al. Molecular beam epitaxy of two-dimensional semiconductor BiI3 films exhibiting sharp exciton absorption[J]. Applied Physics Letters, 2021, 119(24): 243101. |