[1] BIE C B, YU H G, CHENG B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Advanced Materials, 2021, 33(9): 2003521. [2] BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. [3] FANG R P, CHEN K, YIN L C, et al. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries[J]. Advanced Materials, 2019, 31(9): 1800863. [4] SUN Z, MARTINEZ A, WANG F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238. [5] ZHANG P, ZHANG Y, WANG W H, et al. Multispectral photodetectors based on 2D material/Cs3Bi2I9 heterostructures with high detectivity[J]. Nanotechnology, 2021, 32(41): 415202. [6] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. [7] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. [8] DUAN X D, WANG C, PAN A L, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges[J]. Chemical Society Reviews, 2015, 44(24): 8859-8876. [9] LIU Y, HUANG W, CHEN W J, et al. Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability[J]. Applied Surface Science, 2019, 481: 1127-1132. [10] XIA J, HUANG X, LIU L Z, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors[J]. Nanoscale, 2014, 6(15): 8949-8955. [11] YAO J D, ZHENG Z Q, YANG G W. Layered-material WS2/topological insulator Bi2Te3heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-7840. [12] BOLLELLA P, FUSCO G, TORTOLINI C, et al. Beyond graphene: electrochemical sensors and biosensors for biomarkers detection[J]. Biosensors and Bioelectronics, 2017, 89: 152-166. [13] LEE E, YOON Y S, KIM D J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing[J]. ACS Sensors, 2018, 3(10): 2045-2060. [14] ZHANG Y, ZHENG B, ZHU C F, et al. Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA[J]. Advanced Materials, 2015, 27(5): 935-939. [15] ANJU S, MOHANAN P. Biomedical applications of transition metal dichalcogenides (TMDCs)[J]. Synthetic Metals, 2021, 271: 116610. [16] MENG S, ZHANG Y Y, WANG H D, et al. Recent advances on TMDCs for medical diagnosis[J]. Biomaterials, 2021, 269: 120471. [17] BHATTACHARYYA S, SINGH A K. Semiconductor-metal transition in semiconducting bilayer sheets of transition metal dichalcogenides[EB/OL]. 2012: arXiv: 1203.6820[cond-mat.mtrl-sci]. https://arxiv.org/abs/1203.6820 [18] YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W;X=S, Se, Te)[J]. Physical Review B, 2012, 85(3): 033305. [19] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [20] OKADA M, SAWAZAKI T, WATANABE K, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride[J]. ACS Nano, 2014, 8(8): 8273-8277. [21] CONG C X, SHANG J Z, WU X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136. [22] SHI B, ZHOU D M, QIU R S, et al. High-efficiency synthesis of large-area monolayer WS2 crystals on SiO2/Si substrate via NaCl-assisted atmospheric pressure chemical vapor deposition[J]. Applied Surface Science, 2020, 533: 147479. [23] CHEN D C, LI Y, XIAO S, et al. Single Ni atom doped WS2 monolayer as sensing substrate for dissolved gases in transformer oil: a first-principles study[J]. Applied Surface Science, 2022, 579: 152141. [24] MOHAMMED M H, AL-ASADI A S, HANOON F H. Semi-metallic bilayer MS2 (M=W, Mo) induced by boron, carbon, and nitrogen impurities[J]. Solid State Communications, 2018, 282: 28-32. [25] 刘 通.钒掺杂MoS2纳米片的制备及电化学析氢性能研究[D].合肥:合肥工业大学,2020. LIU T. Synthesis of V doped Mo S2 nanosheets for electrochemical hydrogen evolution application[D]. Hefei: Hefei University of Technology, 2020(in Chinese). [26] 罗 皓.掺杂对MoS2吸附气体性能的理论研究及N掺杂MoS2的制备[D].哈尔滨:哈尔滨理工大学,2016. LUO H. The theoretical study of gas adsorption on doped MoS2 and the preparation of nitrogen-doping MoS2[D]. Harbin: Harbin University of Science and Technology, 2016(in Chinese). [27] CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474. [28] GEERLINGS P, DE PROFT F, LANGENAEKER W. Conceptual density functional theory[J]. Chemical Reviews, 2003, 103(5): 1793-1873. [29] GRIMME S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473. [30] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [31] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [32] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [33] BERKDEMIR A, GUTIÉRREZ H R, BOTELLO-MÉNDEZ A R, et al. Identification of individual and few layers of WS2 using Raman Spectroscopy[J]. Scientific Reports, 2013, 3: 1755. [34] LIANG L B, MEUNIER V. First-principles Raman spectra of MoS2, WS2 and their heterostructures[J]. Nanoscale, 2014, 6(10): 5394-5401. [35] YUAN L, CHUNG T F, KUC A, et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures[J]. Science Advances, 2018, 4(2): e1700324. [36] POPESCU V, ZUNGER A. Effective band structure of random alloys[J]. Physical Review Letters, 2010, 104(23): 236403. [37] POPESCU V, ZUNGER A. Extracting effective band structure from supercell calculations on alloys and impurities[J]. Physical Review B, 2012, 85(8): 085201. [38] RIIS-JENSEN A C, DEILMANN T, OLSEN T, et al. Classifying the electronic and optical properties of Janus monolayers[J]. ACS Nano, 2019, 13(11): 13354-13364. |