[1] XIA W S, DAI L P, YU P, et al. Recent progress in van der Waals heterojunctions[J]. Nanoscale, 2017, 9(13): 4324-4365. [2] FURCHI M M, HÖLLER F, DOBUSCH L, et al. Device physics of van der Waals heterojunction solar cells[J]. Npj 2D Materials and Applications, 2018, 2: 3. [3] KARA A, ENRIQUEZ H, SEITSONEN A P, et al. A review on silicene: new candidate for electronics[J]. Surface Science Reports, 2012, 67(1): 1-18. [4] CAHANGIROV S, TOPSAKAL M, AKTÜRK E, et al. Two- and one-dimensional honeycomb structures of silicon and germanium[J]. Physical Review Letters, 2009, 102(23): 236804. [5] YUHARA J, FUJII Y, NISHINO K, et al. Formation of planar stanene epitaxially grown on Ag(111)[C]//APS March Meeting 2018. American Physical Society, 2018. [6] PADILHA J E, PONTES R B. Free-standing bilayer silicene: the effect of stacking order on the structural, electronic, and transport properties[J]. The Journal of Physical Chemistry C, 2015, 119(7): 3818-3825. [7] CHOWDHURY S, JANA D. A theoretical review on electronic, magnetic and optical properties of silicene[J]. Reports on Progress in Physics Physical Society (Great Britain), 2016, 79(12): 126501. [8] LEBÈGUE S, ERIKSSON O. Electronic structure of two-dimensional crystals from ab initio theory[J]. Physical Review B, 2009, 79(11): 115409. [9] LIU C C, FENG W X, YAO Y G. Quantum spin Hall effect in silicene and two-dimensional germanium[J]. Physical Review Letters, 2011, 107(7): 076802. [10] KALONI T P. Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms[J]. The Journal of Physical Chemistry C, 2014, 118(43): 25200-25208. [11] JIANG Z, ZHANG Y, TAN Y W, et al. Quantum Hall effect in graphene[J]. Solid State Communications, 2007, 143(1/2): 14-19. [12] JOBST J, WALDMANN D, SPECK F, et al. Quantum oscillations and quantum Hall effect in epitaxial graphene[J]. Physical Review B, 2010, 81(19): 195434. [13] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204. [14] DÁVILA M E, XIAN L, CAHANGIROV S, et al. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene[J]. New Journal of Physics, 2014, 16(9): 095002. [15] DERIVAZ M, DENTEL D, STEPHAN R, et al. Continuous germanene layer on Al(111)[J]. Nano Letters, 2015, 15(4): 2510-2516. [16] QIN Z H, PAN J B, LU S Z, et al. Direct evidence of Dirac signature in bilayer germanene Islands on Cu(111)[J]. Advanced Materials, 2017, 29(13): 1606046. [17] LI L F, LU S Z, PAN J B, et al. Buckled germanene formation on Pt(111)[J]. Advanced Materials, 2014, 26(28): 4820-4824. [18] GOU J, ZHONG Q, SHENG S X, et al. Strained monolayer germanene with 1×1 lattice on Sb(111)[J]. 2D Materials, 2016, 3(4): 045005. [19] CAHANGIROV S, TOPSAKAL M, CIRACI S. Armchair nanoribbons of silicon and germanium honeycomb structures[J]. Physical Review B, 2010, 81(19): 195120. [20] PANG Q, ZHANG Y, ZHANG J M, et al. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons[J]. Nanoscale, 2011, 3(10): 4330-4338. [21] MAKAREMI M, MORTAZAVI B, SINGH C V. Adsorption of metallic, metalloidic, and nonmetallic adatoms on two-dimensional C3N[J]. The Journal of Physical Chemistry C, 2017, 121(34): 18575-18583. [22] CHAN K T, NEATON J B, COHEN M L. First-principles study of metal adatom adsorption on graphene[J]. Physical Review B, 2008, 77(23): 235430. [23] WANG H T, WANG Q X, CHENG Y C, et al. Doping monolayer graphene with single atom substitutions[J]. Nano Letters, 2012, 12(1): 141-144. [24] YUE Q, CHANG S L, QIN S Q, et al. Functionalization of monolayer MoS2 by substitutional doping: a first-principles study[J]. Physics Letters A, 2013, 377(19/20): 1362-1367. [25] HOAT D M, NASERI M, HIEU N N, et al. Half-metallicity and magnetism in BAs monolayer induced by anchoring 3d transition metals (TM=V, Cr and Mn)[J]. Superlattices and Microstructures, 2020, 139: 106399. [26] CHEN X P, SUN X, JIANG J K, et al. Electrical and optical properties of germanene on single-layer BeO substrate[J]. The Journal of Physical Chemistry C, 2016, 120(36): 20350-20356. [27] ZHUANG J C, LIU C, ZHOU Z Y, et al. Dirac signature in germanene on semiconducting substrate[J]. Advanced Science, 2018, 5(7): 1800207. [28] KUMAR V, SANTOSH R, SINHA A, et al. The structural, electronic, and optical properties of hydrofluorinated germanene (GeH1-xFx): a first-principles study[J]. Journal of Molecular Modeling, 2021, 27(5): 1-10. [29] CHEGEL R, BEHZAD S. Tunable Electronic, optical, and thermal properties of two- dimensional germanene via an external electric field[J]. Scientific Reports, 2020, 10: 704. [30] DHAR N, JANA D. Effect of beryllium doping and vacancy in band structure, magnetic and optical properties of free standing germanene[J]. Current Applied Physics, 2017, 17(12): 1589-1600. [31] YE H Y, HU F F, TANG H Y, et al. Germanene on single-layer ZnSe substrate: novel electronic and optical properties[J]. Physical Chemistry Chemical Physics, 2018, 20(23): 16067-16076. [32] 秦志辉.类石墨烯锗烯研究进展[J].物理学报,2017,66(21):17-24. QIN Z H. Recent progress of graphene-like germanene[J]. Acta Physica Sinica, 2017, 66(21): 17-24(in Chinese). [33] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [34] FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization[J]. The Journal of Physical Chemistry, 1992, 96(24): 9768-9774. |