[1] 王鑫伟,车致远,张 兴,等.不同形貌TiO2薄膜的可控制备及其光电化学性能研究[J].人工晶体学报,2021,50(3):516-522. WANG X W, CHE Z Y, ZHANG X, et al. Controllable preparation and photoelectrochemical performance of TiO2 thin film with different morphology[J]. Journal of Synthetic Crystals, 2021, 50(3): 516-522(in Chinese). [2] 朱晓东,王 娟,喻 强,等.Zn掺杂混晶TiO2的制备及光催化性能研究[J].化工新型材料,2021,49(8):136-139. ZHU X D, WANG J, YU Q, et al. Preparation and photocatalytic property of Zn-doped mixed crystal TiO2[J]. New Chemical Materials, 2021, 49(8): 136-139(in Chinese). [3] HE D, SUN Y B, XIN L, et al. Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2[J]. Chemical Engineering Journal, 2014, 258: 18-25. [4] SHAYEGAN Z, LEE C S, HAGHIGHAT F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase-a review[J]. Chemical Engineering Journal, 2018, 334: 2408-2439. [5] NUR Y, LEAD J R, BAALOUSHA M. Evaluation of charge and agglomeration behavior of TiO2 nanoparticles in ecotoxicological media[J]. Science of the Total Environment, 2015, 535: 45-53. [6] MIDDEPOGU A, HOU J, GAO X, et al. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2018, 161: 497-506. [7] ZHU X D, HAN S H, ZHU D Z, et al. Preparation and characterisation of Ag modified rutile titanium dioxide and its photocatalytic activity under simulated solar light[J]. Micro & Nano Letters, 2019, 14(7): 757-760. [8] ZHANG Y, WANG T, ZHOU M, et al. Hydrothermal preparation of Ag-TiO2 nanostructures with exposed{001}/{101}facets for enhancing visible light photocatalytic activity[J]. Ceramics International, 2017, 43(3): 3118-3126. [9] 孙 楠,陈 鹏,任有良.AgBr/TiO2纳米纤维的制备及其光催化性能研究[J].人工晶体学报,2021,50(1):130-137. SUN N, CHEN P, REN Y L. Preparation and photocatalytic properties of AgBr/TiO2 nanofibers[J]. Journal of Synthetic Crystals, 2021, 50(1): 130-137(in Chinese). [10] SUN Y, GAO Y, ZENG J Y, et al. Enhancing visible-light photocatalytic activity of Ag-TiO2 nanowire composites by one-step hydrothermal process[J]. Materials Letters, 2020, 279: 128506. [11] HU W Y, DONG F Q, ZHANG J, et al. A high-efficiency photocatalyst, flaky anatase@natural rutile composite using one-step microwave hydrothermal synthesis[J]. Research on Chemical Intermediates, 2018, 44(1): 705-720. [12] RAMEZANISANI S, RAJABI M, MOHSENI F. Influence of nitrogen doping on visible light photocatalytic activity of TiO2 nanowires with anatase-rutile junction[J]. Chemical Physics Letters, 2020, 744: 137217. [13] WANG H L, GAO X Y, DUAN G R, et al. Facile preparation of anatase-brookite-rutile mixed-phase N-doped TiO2 with high visible-light photocatalytic activity[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 603-608. [14] MUTUMA B K, SHAO G N, KIM W D, et al. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties[J]. Journal of Colloid and Interface Science, 2015, 442: 1-7. [15] GHASEMI Z, ABDI V, SOURINEJAD I. Green fabrication of Ag/AgCl@TiO2 superior plasmonic nanocomposite: biosynthesis, characterization and photocatalytic activity under sunlight[J]. Journal of Alloys and Compounds, 2020, 841: 155593. [16] ZHANG H Z, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3481-3487. [17] PREETHI L K, MATHEWS T, NAND M, et al. Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: an efficient photocatalyst for water splitting[J]. Applied Catalysis B: Environmental, 2017, 218: 9-19. [18] FAN X, WAN J, LIU E Z, et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by Ag deposited and Ce doped TiO2 nanotube arrays[J]. Ceramics International, 2015, 41(3): 5107-5116. [19] LEI X F, XUE X X, YANG H. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light[J]. Applied Surface Science, 2014, 321: 396-403. [20] LIN X X, RONG F, FU D G, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants[J]. Powder Technology, 2012, 219: 173-178. [21] LI G H, SUN Y Y, ZHANG Q M, et al. Ag quantum dots modified hierarchically porous and defective TiO2 nanoparticles for improved photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2021, 410: 128397. [22] 王金刚,姬平利,孔祥正.共沉淀法制备Ag/AgCl-TiO2空心复合纳米微球及其光催化性能[J].高等学校化学学报,2013,34(11):2635-2643. WANG J G, JI P L, KONG X Z. Preparation of Ag/AgCl-TiO2 hollow nanoparticles by co-precipitation and their photocatalytic property[J]. Chemical Journal of Chinese Universities, 2013, 34(11): 2635-2643(in Chinese). |