JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (5): 814-829.
Special Issue: 超硬材料与特殊环境晶体生长技术
• Reviews • Previous Articles Next Articles
MU Lianxi1, ZENG Hansen1, ZHU Xiaohua1, TU Juping1, LIU Jinlong1,2, CHEN Liangxian1, WEI Junjun1,2, LI Chengming1,2, OUYANG Xiaoping3
Received:
2022-03-02
Online:
2022-05-15
Published:
2022-06-17
CLC Number:
MU Lianxi, ZENG Hansen, ZHU Xiaohua, TU Juping, LIU Jinlong, CHEN Liangxian, WEI Junjun, LI Chengming, OUYANG Xiaoping. Research Progress of Nuclear Radiation Detectors with CVD Synthetic Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 814-829.
[1] BASSI G, BOSISIO L, CRISTAUDO P, et al. Calibration of diamond detectors for dosimetry in beam-loss monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1004: 165383. [2] ZHANG M L, XIA Y B, WANG L J, et al. Response of chemical vapor deposition diamond detectors to X-ray[J]. Solid State Communications, 2004, 130(6): 425-428. [3] SATO Y, SHIMAOKA T, KANEKO J H, et al. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 147-150. [4] BALMER R S, BRANDON J R, CLEWES S L, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications[J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364221. [5] CANALI C, GATTI E, KOZLOV S F, et al. Electrical properties and performances of natural diamond nuclear radiation detectors[J]. Nuclear Instruments and Methods, 1979, 160(1): 73-77. [6] KIM M, SEO J H, SINGISETTI U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354. [7] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432. [8] HEARNE S M, TRAJKOV E, JAMIESON D N, et al. The role of charge trapping at grain boundaries on charge transport in polycrystalline chemical vapor deposited diamond based detectors[J]. Journal of Applied Physics, 2006, 99(11): 113703. [9] LIU L Y, OUYANG X P, ZHANG J F, et al. Polycrystalline CVD diamond detector: fast response and high sensitivity with large area[J]. AIP Advances, 2014, 4(1): 017114. [10] ICHIKAWA K, SHIMAOKA T, KATO Y, et al. Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging[J]. Journal of Applied Physics, 2020, 128(15): 155302. [11] MOHAPATRA S, SAHU P K, RATH S, et al. Defect characterization and numerical modelling of single-crystal ultra-pure intrinsic diamond[J]. Diamond and Related Materials, 2020, 106: 107822. [12] TRAN T T, KIANINIA M, BRAY K, et al. Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters[J]. APL Photonics, 2017, 2(11): 116103. [13] MÜLLER T, HEPP C, PINGAULT B, et al. Optical signatures of silicon-vacancy spins in diamond[J]. Nature Communications, 2014, 5: 3328. [14] IWASAKI T, ISHIBASHI F, MIYAMOTO Y, et al. A germanium-vacancy single photon source in diamond[EB/OL]. 2015: arXiv: 1503.04938[cond-mat.mtrl-sci]. https://arxiv.org/abs/1503.04938 [15] 韦 媚.位错影响下的红外探测器HgCdTe材料载流子输运特性研究[D].西安:西安电子科技大学,2020. WEI M. Study on carrier transport characteristics of HgCdTe material for infrared detector under the influence of dislocation[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2020(in Chinese). [16] WANG W H, WANG Y, SHU G Y, et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth[J]. New Carbon Materials, 2021, 36(6): 1034-1045. [17] KOIZUMI S, UMEZAWA H, PERNOT J, et al. Power electronics device applications of diamond semiconductors[M]. Oxford: Elsevier, 2018. [18] 刘金龙,安 康,陈良贤,等.CVD金刚石自支撑膜的研究进展[J].表面技术,2018,47(4):1-10. LIU J L, AN K, CHEN L X, et al. Research progress of freestanding CVD diamond films[J]. Surface Technology, 2018, 47(4): 1-10(in Chinese). [19] HIRD J R, FIELD J E. Diamond polishing[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2052): 3547-3568. [20] ACHARD J, TALLAIRE A, MILLE V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates[J]. Physica Status Solidi (a), 2014, 211(10): 2264-2267. [21] YAMAMOTO M, TERAJI T, ITO T. Improvement in the crystalline quality of homoepitaxial diamond films by oxygen plasma etching of mirror-polished diamond substrates[J]. Journal of Crystal Growth, 2005, 285(1/2): 130-136. [22] MUCHNIKOV A B, VIKHAREV A L, BUTLER J E, et al. Homoepitaxial growth of CVD diamond after ICP pretreatment[J]. Physica Status Solidi (a), 2015, 212(11): 2572-2577. [23] HICKS M L, PAKPOUR-TABRIZI A C, ZUERBIG V, et al. Optimizing reactive ion etching to remove sub-surface polishing damage on diamond[J]. Journal of Applied Physics, 2019, 125(24): 244502. [24] SILVA F, ACHARD J, BRINZA O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth[J]. Diamond and Related Materials, 2009, 18(5/6/7/8): 683-697. [25] LANGER J L, CIMALLA V, PRESCHER M, et al. Quality assessment of in situ plasma-etched diamond surfaces for chemical vapor deposition overgrowth[J]. Physica Status Solidi (a), 2021, 218(11): 2100035. [26] TAVARES C, KOIZUMI S, KANDA H. Effects of RIE treatments for{111}diamond substrates on the growth of P-doped diamond thin films[J]. Physica Status Solidi (a), 2005, 202(11): 2129-2133. [27] TERAJI T, TANIGUCHI T, KOIZUMI S, et al. Chemical vapor deposition of 12C isotopically enriched polycrystalline diamond[J]. Japanese Journal of Applied Physics, 2012, 51: 090104. [28] LIU J L, LIN L Z, ZHAO Y, et al. Homo-epitaxial growth of single crystal diamond in the purified environment by active O atoms[J]. Vacuum, 2018, 155: 391-397. [29] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 703-712. [30] NISTOR S V, STEFAN M, RALCHENKO V, et al. Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates[J]. Journal of Applied Physics, 2000, 87(12): 8741-8746. [31] ZHAO Y, GUO Y Z, LIN L Z, et al. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD[J]. Journal of Crystal Growth, 2018, 491: 89-96. [32] SECROUN A, BRINZA O, TARDIEU A, et al. Dislocation imaging for electronics application crystal selection[J]. Physica Status Solidi (a), 2007, 204(12): 4298-4304. [33] SEIBT M, KHALIL R, KVEDER V, et al. Electronic states at dislocations and metal silicide precipitates incrystalline silicon and their role insolar cell materials[J]. Applied Physics A, 2009, 96(1): 235-253. [34] BERDERMANN E, POMORSKI M, DE BOER W, et al. Diamond detectors for hadron physics research[J]. Diamond and Related Materials, 2010, 19(5/6): 358-367. [35] GALBIATI A, LYNN S, OLIVER K, et al. Performance of monocrystalline diamond radiation detectors fabricated using TiW, Cr/Au and a novel ohmic DLC/Pt/Au electrical contact[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1863-1874. [36] 刘佳伟.高性能金刚石辐照探测器的研究与应用[D].武汉:武汉大学,2019. LIU J W. Research and application of high performance diamond radiation detectors[D]. Wuhan: Wuhan University, 2019(in Chinese). [37] LIU J W, CHANG J F, ZHANG J Z, et al. Design, fabrication and testing of CVD diamond detectors with high performance[J]. AIP Advances, 2019, 9(4): 045205. [38] SATO Y, MURAKAMI H, SHIMAOKA T, et al. Single-crystal CVD diamond detector for high-resolution particle spectrometry[J]. Europhysics Letters, 2014, 108(4): 42001. [39] 陆荣荣,裘惠源,朱德彰.离子束诱导电荷显微术的现状与发展趋势[J].核技术,2002,25(8):591-596. LU R R, QIU H Y, ZHU D Z. The status and new trends of ion beam induced charge technique[J]. Nuclear Techniques, 2002, 25(8): 591-596(in Chinese). [40] SHIMAOKA T, KOIZUMI S, TANAKA M M. Diamond photovoltaic radiation sensor using pn junction[J]. Applied Physics Letters, 2018, 113(9): 093504. [41] KASAP S, RAMASWAMI K O, KABIR M Z, et al. Corrections to the Hecht collection efficiency in photoconductive detectors under large signals: non-uniform electric field due to drifting and trapped unipolar carriers[J]. Journal of Physics D: Applied Physics, 2019, 52(13): 135104. [42] LIOLIOU G, LEFEUVRE G, BARNETT A M. High temperature (≤160 ℃) X-ray and β-particle diamond detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 165025. [43] GALLIN-MARTEL M L, CURTONI S, MARCATILI S, et al. X-ray beam induced current analysis of CVD diamond detectors in the perspective of a beam tagging hodoscope development for hadrontherapy on-line monitoring[J]. Diamond and Related Materials, 2021, 112: 108236. [44] CAZZANIGA C, KASTRIOTOU M, GARCÍA ALÍA R, et al. Measurements of ultra-high energy lead ions using silicon and diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164671. [45] KOBAYASHI M I, ANGELONE M, YOSHIHASHI S, et al. Thermal neutron measurement by single crystal CVD diamond detector applied with the pulse shape discrimination during deuterium plasma experiment in LHD[J]. Fusion Engineering and Design, 2020, 161: 112063. [46] PASSERI M, POMPILI F, ESPOSITO B, et al. Assessment of single crystal diamond detector radiation hardness to 14 MeV neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1010: 165574. [47] ABDEL-RAHMAN M A E, LOHSTROH A, BRYANT P. Alpha spectroscopy and X-ray induced photocurrent studies of a SC CVD diamond detector fabricated with PLD contacts[J]. Radiation Physics and Chemistry, 2019, 164: 108357. [48] SU K, REN Z Y, ZHANG J F, et al. High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector[J]. Applied Physics Letters, 2020, 116(9): 092104. [49] 黄广伟,吴 坤,陈 晔,等.单晶金刚石探测器对14MeV单能中子的响应[J].物理学报,2021,70(20):202901. HUANG G W, WU K, CHEN Y, et al. Response to 14 MeV neutrons for single-crystal diamond detectors[J]. Acta Physica Sinica, 2021, 70(20): 202901(in Chinese). [50] LIU Y H, LOH C W, ZHANG J L, et al. Proton irradiation tests of single crystal diamond detector at CIAE[J]. Nuclear Materials and Energy, 2020, 22: 100735. [51] POMORSKI M, CAYLAR B, BERGONZO P. Super-thin single crystal diamond membrane radiation detectors[J]. Applied Physics Letters, 2013, 103(11): 112106. [52] LOHSTROH A, SELLIN P J, WANG S G, et al. Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond[J]. Applied Physics Letters, 2007, 90(10): 102111. [53] TARUN A, LEE S J, YAP C M, et al. Impact of impurities and crystal defects on the performance of CVD diamond detectors[J]. Diamond and Related Materials, 2016, 63: 169-174. [54] SU K, HE Q, ZHANG J F, et al. Device performance of chemical vapor deposition monocrystal diamond radiation detectors correlated with the bulk diamond properties[J]. Journal of Physics D: Applied Physics, 2021, 54(14): 145105. [55] STEHL C, FISCHER M, GSELL S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters, 2013, 103(15): 151905. [56] CHERNYKH S V, CHERNYKH A V, TARELKIN S A, et al. High-pressure high-temperature single-crystal diamond type Ⅱa characterization for particle detectors[J]. Physica Status Solidi (a), 2020, 217(8): 1900888. [57] SATO S I, MAKINO T, OHSHIMA T, et al. Transient current induced in thin film diamonds by swift heavy ions[J]. Diamond and Related Materials, 2017, 75: 161-168. [58] TSUBOTA M, KANEKO J H, MIYAZAKI D, et al. High-temperature characteristics of charge collection efficiency using single CVD diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 789: 50-56. [59] VARTSKY D, GOLDBERG M, EISEN Y, et al. Radiation induced polarization in CdTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1988, 263(2/3): 457-462. [60] HOLMES J M, DUTTA M, KOECK F A, et al. Neutralizing the polarization effect of diamond diode detectors using periodic forward bias pulses[J]. Diamond and Related Materials, 2019, 94: 162-165. [61] MANFREDOTTI C, VITTONE E, FIZZOTTI F, et al. Effects of light on the ‘primed' state of CVD diamond nuclear detectors[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 446-450. [62] RAMOS M R, CRNJAC A, COSIC D, et al. Ion microprobe study of the polarization quenching techniques in single crystal diamond radiation detectors[J]. Materials, 2022, 15(1): 388. [63] ZOU M N, BOHON J, SMEDLEY J, et al. Proton radiation effects on carrier transport in diamond radiation detectors[J]. AIP Advances, 2020, 10(2): 025004. [64] STEINEGGER P, DRESSLER R, EICHLER R, et al. Diamond detectors for high-temperature transactinide chemistry experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 850: 61-67. [65] KUMAR A, KUMAR A, TOPKAR A, et al. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 858: 12-17. [66] CRNJAC A, SKUKAN N, PROVATAS G, et al. Electronic properties of a synthetic single-crystal diamond exposed to high temperature and high radiation[J]. Materials, 2020, 13(11): 2473. [67] CRNJAC A, RAMOS M R, SKUKAN N, et al. Charge transport in single crystal CVD diamond studied at high temperatures[J]. Journal of Physics D: Applied Physics, 2021, 54(46): 465103. [68] OGASAWARA K, BROILES T W, COULTER K E, et al. Single crystal chemical vapor deposit diamond detector for energetic plasma measurement in space[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 131-137. [69] DUEÑAS J A, MORA J M, TRAEGER M, et al. Time response of 50 μm thickness single crystal diamond detectors[J]. Diamond and Related Materials, 2015, 55: 144-148. [70] BOSSINI E, MINAFRA N. Diamond detectors for timing measurements in high energy physics[J]. Frontiers in Physics, 2020, 8: 248. [71] TRISCHUK W, et al. Diamond particle detectors for high energy physics[J]. Nuclear and Particle Physics Proceedings, 2016, 273/274/275: 1023-1028. [72] POMPILI F, ESPOSITO B, MAROCCO D, et al. Radiation and thermal stress test on diamond detectors for the radial neutron camera of ITER[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 936: 62-64. [73] 刘金龙,朱肖华,郭彦召,等.金刚石探测器材料研制与中子探测性能研究[J].真空电子技术,2021(5):46-53+72. LIU J L, ZHU X H, GUO Y Z, et al. Material development and neutron detection performance of diamond detector[J]. Vacuum Electronics, 2021(5): 46-53+72(in Chinese). [74] CURTONI S, GALLIN-MARTEL M L, MARCATILI S, et al. Performance of CVD diamond detectors for single ion beam-tagging applications in hadrontherapy monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015: 165757. |
[1] | ZHAO Qingsong, NIU Xiaodong, GU Xiaoying, DI Juqing. Growth and Properties of Large Size Ultra High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 34-39. |
[2] | LIU Shuai, XIONG Huifan, YANG Xia, YANG Deren, PI Xiaodong, SONG Lihui. Effects of Electron Irradiation on Defects of 4H-SiC MOS Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1536-1541. |
[3] | TANG Huazhu, XIAO Qingquan, FU Shasha, XIE Quan. Simulation on ZnS/SnS Solar Cells with Spiro-OMeTAD as Hole Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1394-1408. |
[4] | NI Haoran, CHEN Ya, WANG Liguang, RUI Yang, ZHAO Zehui, MA Cheng, LIU Jie, ZHANG Xingmao, ZHAO Yanxiang, YANG Shaolin. Numerical Simulation of the Effect of Heat Shield Structure on Temperature Distribution in Growing 300 mm Semiconductor Grade Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1196-1211. |
[5] | LAN Feifei, LIU Shasha, FANG Shishu, WANG Yingmin, CHENG Hongjuan. Research Progress on Controlling the Thermal Boundary Resistance of GaN on Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 913-921. |
[6] | XIAO Hongyu, LI Yong, TIAN Changhai, ZHANG Weixi, WANG Qiang, XIAO Zhengguo, WANG Ying, JIN Hui, BAO Zhigang, ZHOU Zhenxiang. Study on the Growth of Type-Ib Diamond Single Crystal and the Temperature Field Distribution in the Synthesis Cavities [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 959-966. |
[7] | SHU Min, LIANG Junhui, CHEN Da, CHEN Zhao, QIN Laishun. Study on the Characteristics of MoO3-x Nanoslot SERS Substrate Prepared by Hydrothermal Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1061-1068. |
[8] | BAO Aida, MA Yongqiang, GUO Xin. First Principles Study on the Structure and Interface Properties of GaSe/ZnS Heterostructure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 669-675. |
[9] | LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 355-371. |
[10] | ZHANG Yalin, AN Xiaoming, GE Xingang, JIANG Long, LI Yifeng. Thermal Conductivity Test of Large-Size Diamond by Laser Flash Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 503-510. |
[11] | HAO Jinglin, DENG Lifen, WANG Kaiyue, SONG Hui, JIANG Nan, KAZUHITO Nishimura. Synthesis of Doped Diamond by High-Pressure and High-Temperature: a Review [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 194-209. |
[12] | GUO Yu, LIU Chunjun, ZHANG Xinhe, SHEN Pengyuan, ZHANG Bo, LOU Yanfang, PENG Tonghua, YANG Jian. Analysis and Review of Influencing Factors of SiC Homo-Epitaxial Wafers Quality [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 210-217. |
[13] | QIAN Mengxue, ZHANG Zhirong, WANG Huadong, ZHANG Qingli, SUN Yu. Characterization Method for Internal Defects in Laser Crystals Based on Slice Beam Scanning [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 238-245. |
[14] | LI Chuanhao, LI Zhonghui, PENG Daqing, ZHANG Dongguo, YANG Qiankun, LUO Weike. Study on vdW Epitaxy Mechanism and Stress Modulation of Large-Size GaN Microwave Material [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 252-257. |
[15] | LUO Xiaohang, XU Guangyu, LI Lijun, ZHANG Yongkang, ZHANG Yachen, WU Haiping, AN Kang. Comparison on Three-Point-Bending Fracture Toughness of Free-Standing Diamond Thick Films from Three Directions [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2085-2093. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 315
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 311
|
|
|||||||||||||||||||||||||||||||||||||||||||||