JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (9-10): 1608-1625.
• Reviews • Previous Articles Next Articles
ZHANG Yutong1, ZHU Mengqi1, WANG Biao1, JIA Xinhui1, LI Jing1, WANG Jiyang1,2
Received:2022-08-03
Online:2022-10-15
Published:2022-11-02
CLC Number:
ZHANG Yutong, ZHU Mengqi, WANG Biao, JIA Xinhui, LI Jing, WANG Jiyang. Research Progress of Huntite Family Nonlinear Optical Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1608-1625.
| [1] FRANKEN P A, HILL A E, PETERS C W, et al. Generation of second harmonic[J]. Physical Review Letters, 1961, 7: 118. [2] CHEN X Y, LUO Z D, JAQUE D, et al. Comparison of optical spectra of Nd3+ in NdAl3(BO3)4(NAB), Nd∶GdAl3(BO3)4(NGAB) and Nd∶Gd0.2Y0.8Al3(BO3)4(NGYAB) crystals[J]. Journal of Physics: Condensed Matter, 2001, 13(5): 1171-1178. [3] HUANG M L, CHEN Y J, CHEN X Y, et al. A CW blue laser emission by self-sum-frequency-mixing in Nd3+∶GdAl3(BO3)4 crystal[J]. Optics Communications, 2002, 208(1/2/3): 163-166. [4] LIANG K C, CHAUDHURY R P, LORENZ B, et al. Magnetoelectricity in the system RAl3(BO3)4 (R=Tb, Ho, Er, Tm)[EB/OL]. 2012: arXiv: 1201.4890. https://arxiv.org/abs/1201.4890 [5] VASILIEV A N, POPOVA E A. Rare-earth ferroborates RFe3(BO3)4[J]. Low Temperature Physics, 2006, 32(8): 735-747. [6] KADOMTSEVA A M, POPOV Y F, VOROB’EV G P, et al. Magnetoelectric and magnetoelastic properties of rare-earth ferroborates[J]. Low Temperature Physics, 2010, 36(6): 511-521. [7] KUZ’MICHEVA G M, KAUROVA I A, RYBAKOV V B, et al. Crystallochemical design of huntite-family compounds[J]. Crystals, 2019, 9(2): 100-148. [8] CHEN C T, YE N, LIN J, et al. Computer-assisted design for nonlinear optical crystals[C]//Proc SPIE 3556, Electro-Optic and Second Harmonic Generation Materials, Devices, and Applications II, 1998, 3556: 14-20. [9] LEONYUK N I. Recent developments in the growth of Rm3(BO3)4 crystals for science and modern applications[J]. Progress in Crystal Growth and Characterization of Materials, 1995, 31(3/4): 279-312. [10] SCHÜTZ I, FREITAG I, WALLENSTEIN R. Miniature self-frequency-doubling CW Nd∶YAB laser pumped by a diode-laser[J]. Optics Communications, 1990, 77(2/3): 221-225. [11] YU J Q, LIU L J, ZHAI N X, et al. Crystal growth and optical properties of YAl3(BO3)4 for UV applications[J]. Journal of Crystal Growth, 2012, 341(1): 61-65. [12] TRAN T T, YU H W, RONDINELLI J M, et al. Deep ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 2016, 28(15): 5238-5258. [13] BALLMAN A A. A new series of synthetic borates isostructural with the carbonate mineral huntite[J]. American Mineralogist, 1962, 47: 1380-1383. [14] FILIMONOV A A, LEONYUK N I, MEISSNER L B, et al. Nonlinear optical properties of isomorphic family of crystals with yttrium-aluminium borate (YAB) structure[J]. Kristall Und Technik, 1974, 9(1): 63-66. [15] YU X S, YUE Y C, YAO J Y, et al. YAl3(BO3)4∶crystal growth and characterization[J]. Journal of Crystal Growth, 2010, 312(20): 3029-3033. [16] ORESHONKOV A S, ROGINSKII E M, SHESTAKOV N P, et al. Structural, electronic and vibrational properties of YAl3(BO3)4[J]. Materials, 2020, 13(3): 545. [17] LEONYUK N I, LEONYUK L I. Growth and characterization of RM3(BO3)4 crystals[J]. Progress in Crystal Growth and Characterization of Materials, 1995, 31(3/4): 179-278. [18] LIU L J, LIU C L, WANG X Y, et al. Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals[J]. Solid State Sciences, 2009, 11(4): 841-844. [19] LIU C L, LIU L J, ZHANG X, et al. Crystal growth and optical properties of non-UV absorption K2Al2B2O7 crystals[J]. Journal of Crystal Growth, 2011, 318(1): 618-620. [20] LIU H, LI J, FANG S H, et al. Growth of YAl3(BO3)4 crystals with tungstate based flux[J]. Materials Research Innovations, 2011, 15(2): 102-106. [21] YANG F G, ZHU Z J, YOU Z Y, et al. The growth, thermal and nonlinear optical properties of single-crystal GdAl3(BO3)4[J]. Laser Physics, 2011, 21(4): 750-754. [22] LIAO J S, LIN Y F, CHEN Y J, et al. Growth and spectral properties of Yb3+∶GdAl3(BO3)4 single crystal[J]. Journal of Crystal Growth, 2004, 269(2/3/4): 484-488. [23] SUN C T, WANG Y, TU C Y, et al. Mesoscale morphology evolution of a GdAl3(BO3)4 single crystal in a flux system: a case study of thermodynamic control of the anisotropic mass transfer during crystal growth[J]. CrystEngComm, 2015, 17(17): 3208-3213. [24] YUE Y, ZHU Y Y, ZHAO Y, et al. Growth and nonlinear optical properties of GdAl3(BO3)4 in a flux without molybdate[J]. Crystal Growth & Design, 2016, 16: 347-350. [25] ZHU Y Y, YUE Y C, TU H, et al. Flux growth and 266 nm generation of a GdAl3(BO3)4 crystal[J]. CrystEngComm, 2016, 18(16): 2965-2968. [26] JUNG S T, KANG J K, CHUNG S J. Crystal growth and X-ray topography of NdAl3(BO3)4[J]. Journal of Crystal Growth, 1995, 149(3/4): 207-214. [27] JUNG S T, CHOI D Y, CHUNG S J. Crystal growth of NdAl3(BO3)4 from K2O/MoO3/Nd2O3/B2O3/KF flux[J]. Journal of Crystal Growth, 1996, 160(3/4): 305-309. [28] VOLKOVA E A, MALTSEV V V, LEONYUK N I. Flux growth of NdAl3(BO3)4 single crystals from a K2Mo3O10 based system[J]. CrystEngComm, 2017, 19(7): 1071-1075. [29] JAQUE D, ENGUITA O, LUO Z D, et al. Up-conversion luminescence in the NdAl3(BO3)4 (NAB) microchip laser crystal[J]. Optical Materials, 2004, 25(1): 9-15. [30] TESHIMA K, KIKUCHI Y, SUZUKI T, et al. Growth of ErAl3(BO3)4 single crystals from a K2Mo3O10 flux[J]. Crystal Growth & Design, 2006, 6: 1766-1768. [31] MALAKHOVSKII A V, KUTSAK T V, SUKHACHEV A L, et al. Spectroscopic properties of ErAl3(BO3)4 single crystal[J]. Chemical Physics, 2014, 428: 137-143. [32] FANG S H, LIU H, YE N. Growth and thermophysical properties of the nonlinear optical crystal LuAl3(BO3)4[J]. Crystal Growth & Design, 2011, 11: 5048-5052. [33] FANG S H, LIU H, HUANG L X, et al. Growth and optical properties of nonlinear LuAl3(BO3)4 crystals[J]. Optics Express, 2013, 21(14): 16415-16423. [34] XU Y Y, GONG X H, CHEN Y J, et al. Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal[J]. Journal of Crystal Growth, 2003, 252(1/2/3): 241-245. [35] LI J, ZHAO H Y, WANG J Y, et al. Growth and characteristic of YbAl3(BO3)4 crystal[J]. Journal of Rare Earths, 2006, 24(1): 130-132. [36] 李 静,王继扬,张怀金,等.大尺寸Yb∶YAl3(BO3)4晶体的生长及其自倍频激光性能研究[J].人工晶体学报,2005,34(5):778-781. LI J, WANG J Y, ZHANG H J, et al. Growth of large size Yb∶YAl3(BO3)4 crystal and its laser performance[J]. Journal of Synthetic Crystals, 2005, 34(5): 778-781 (in Chinese). [37] KUZNETSOV A B, KOKH K A, KONONOVA N G, et al. Polymorphism in SmSc3(BO3)4: crystal structure, luminescent and SHG properties[J]. Journal of Alloys and Compounds, 2021, 851: 156825. [38] JAMOUS A Y, KUZNETSOV A B, KOKH K A, et al. Study of RBO3-ScBO3 phase diagrams and RSc3(BO3)4 orthoborates (R=La, Pr and Nd)[J]. Journal of Alloys and Compounds, 2022, 905: 164162. [39] PETERSON G A, KESZLER D A, REYNOLDS T A. Stoichiometric, trigonal huntite borate CeSc3(BO3)4[J]. International Journal of Inorganic Materials, 2000, 2(1): 101-106. [40] KUZ’MIN N N, BOLDYREV K N, LEONYUK N I, et al. Luminescence and nonlinear optical properties of borates LnGa3(BO3)4 (Ln=Nd, Sm, Tb, Er, Dy, or Ho)[J]. Optics and Spectroscopy, 2019, 127(1): 107-112. [41] BOROVIKOVA E Y, BOLDYREV K N, AKSENOV S M, et al. Crystal growth, structure, infrared spectroscopy, and luminescent properties of rare-earth gallium borates RGa3(BO3)4, R=Nd, Sm-Er, Y[J]. Optical Materials, 2015, 49: 304-311. [42] IVONINA N. P, KUTOVOJ S A, LAPTEV V V, et al. Crystal growth and study of rare earth scandoborates[J]. Izvestiya Akademii Nauk SSSR. Neorganicheskie Materialy, 1991, 27: 64-67. [43] DURMANOV S T, KUZMIN O V, KUZMICHEVA G M, et al. Binary rare-earth scandium borates for diode-pumped lasers[J]. Optical Materials, 2001, 18(2): 243-284. [44] XU X, YE N. GdxLa1-xSc3(BO3)4: a new nonlinear optical crystal[J]. Journal of Crystal Growth, 2011, 324(1): 304-308. [45] GHEORGHE L, KHALED F, ACHIM A, et al. Czochralski growth and characterization of incongruent melting LaxGdyScz(BO3)4(x+y+z= 4) nonlinear optical crystal[J]. Crystal Growth & Design, 2016, 16(6): 3473-3479. [46] YE N, STONE-SUNDBERG J, HRUSCHKA M A, et al. Nonlinear optical crystal YxLayScz(BO3)4 (x+y+z=4)[J]. Chemistry of Materials, 2005, 17(10): 2687-2692. [47] GHEORGHE L, GRECULEASA M, BROASCA A, et al. Incongruent melting LaxYySc4-x-y(BO3)4∶LYSB nonlinear optical crystal grown by the Czochralski method[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20987-20994. [48] LI Y K, AKA G, KAHN-HARARI A, et al. Phase transition, growth, and optical properties of NdxLa1-xSc3(BO3)4 crystals[J]. Journal of Materials Research, 2001, 16(1): 38-44. [49] LI W, HUANG L X, ZHANG G, et al. Growth and characterization of nonlinear optical crystal Lu0.66La0.95Sc2.39(BO3)4[J]. Journal of Crystal Growth, 2007, 307(2): 405-409. [50] KOKH A, KUZNETSOV A, KONONOVA N, et al. Three-cation scandium borates RxLa1-xSc3(BO3)4(R=Sm, Tb): synthesis, structure, crystal growth and luminescent properties[C]. 14th International Congress for Applied Mineralogy, 2019, 267-271. [51] KUZNETSOV A, KOKH A, KONONOVA N, et al. New scandium borates RxLayScz(BO3)4 (x+y+z=4, R=Sm, Tb): synthesis, growth, structure and optical properties[J]. Materials Research Bulletin, 2020, 126: 110850. [52] BROASCA A, GRECULEASA M, VOICU F, et al. Growth and characterization of 3.5at.% Nd∶LGSB bifunctional crystal[J]. Optical Materials, 2022, 123: 111832. [53] MEYN J P, JENSEN T, HUBER G. Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanum scandium borate[J]. IEEE Journal of Quantum Electronics, 1994, 30(4): 913-917. [54] LIN Z S, WANG Z Z, CHEN C T, et al. Mechanism for linear and nonlinear optical effects in monoclinic bismuth borate (BiB3O6) crystal[J]. Journal of Applied Physics, 2001, 90(11): 5585-5590. [55] WANG S C, YE N. Nonlinear optical crystal BiAlGa2(BO3)4[J]. Solid State Sciences, 2007, 9(8): 713-717. |
| [1] | LIN Haixin, GAO Dedong, WANG Shan, ZHANG Zhenzhong, AN Yan, ZHANG Wenyong. Multi-Physics Field Modeling and Optimization of Large-Size Czochralski Silicon Single Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 17-33. |
| [2] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
| [3] | WANG Hongyan, WANG Shiwu, NIE Yi, ZHANG Xingyu, ZHANG Fang, XU Hui, LI Ruimao, KUANG Yongfei. Growth and Properties of Large Size and High Quality Cr3+∶BeAl2O4 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 947-952. |
| [4] | SUN Dehui, HAN Wenbin, LI Chenzhe, PENG Liguo, LIU Hong. Growth of 8-Inch Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 434-440. |
| [5] | LIU Qilu, ZHENG Mingyang, GAO Yang, ZHANG Longxi, SONG Yukun, WANG Fulei, LIU Hong, WANG Dongzhou, SANG Yuanhua. Poling Electric Field Uniformization Design Regulates the Duty Cycle of Periodically Poled Lithium Niobate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 449-457. |
| [6] | ZHANG Zhiheng, HOU Wentao, LIU Jian, LI Dongzhen, XUE Yanyan, WANG Qingguo, LYU Shasha, XU Xiaodong, XU Jun. Spectral and Laser Properties of Er3+-Doped CaYAlO4 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1868-1876. |
| [7] | LI Hongyuan, SUN Dunlu, ZHANG Huili, LUO Jianqiao, QUAN Cong, CHENG Maojie. Research Progress on Gallium Garnet Series Single Crystal with Large Lattice Constant for Magneto-Optical Substrates [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1657-1668. |
| [8] | FU Wenfeng, ZHU Xupeng, LIAO Jun, RU Qiang, XUE Shuwen, ZHANG Jun. Research Progress and Prospect of CZTS-Based Single Crystal Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 12-24. |
| [9] | WANG Liguang, RUI Yang, SHENG Wang, MA Yinshuang, MA Cheng, CHEN Weinan, ZOU Qipeng, DU Pengxuan, HUANG Liuqing, LUO Xuetao. Influence Mechanism of Crucible Rotation Rates on the Flow Field and Oxygen Concentration of the Semiconductor-Grade Czochralski Monocrystalline Silicon Melt under Transverse Magnetic Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1641-1650. |
| [10] | ZHANG Ronggui, CHEN Tengbo, LI Laichao, LI Yuhu, MA Yanli. Effect of Dy and Lu Doping on Magneto-Optical Properties of TSAG Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1407-1412. |
| [11] | LI Xingwang, HAN Jianfeng, LU Jia, XING Xiaowen, WANG Yongguo, WEI Lei, XU Xuezhen. Growth and Properties of Large Size Tm∶YAP Composite Laser Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1236-1242. |
| [12] | HUANG Jianhua, WU Jie, HUANG Yidong, LIN Yanfu, GONG Xinghong, CHEN Yujin. Growth, Spectroscopic and 1.5 μm Laser Properties of Er3+,Yb3+∶Ba3Gd(PO4)3 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1286-1295. |
| [13] | LI Xingwang, YANG Yu, LU Jia, DONG Chang, WANG Yongguo, XU Xuezhen. Growth and Properties of Large Size Lithium Terbium Fluoride Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1352-1356. |
| [14] | LI Xingwang, YANG Guoli, HAN Jianfeng, WANG Yongguo, BI Hai, XU Xuezhen. Growth of High Quality ø10 Inch Yb:YAG Laser Crystal by Czochralski Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(4): 547-549. |
| [15] | WANG Benfa, WANG Shouzhi, WANG Guodong, YU Jiaoxian, LIU Lei, LI Qiubo, WU Yuzhu, XU Xiangang, ZHANG Lei. Research Progress on the Growth of GaN Single Crystal by Sodium Flux Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 183-195. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS