[1] LI J T. Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship[J]. Nano-Micro Letters, 2022, 14(1): 112. [2] FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13771-13802. [3] SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: a review[J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121-1140. [4] 闫敏艳, 宫长伟, 张 鹤, 等. Ti掺杂对Li-Mg-N-H材料储氢性能影响的第一性原理研究[J]. 人工晶体学报, 2022, 51(2): 297-303. YAN M Y, GONG C W, ZHANG H, et al. First-principles study on the effect of Ti doping on hydrogen storage performance of Li-Mg-N-H materials[J]. Journal of Synthetic Crystals, 2022, 51(2): 297-303 (in Chinese). [5] MEDURI S, NANDANAVANAM J. Materials for hydrogen storage at room temperature——an overview[J]. Materials Today: Proceedings, 2023, 72: 1-8. [6] WANG L F, YANG R T. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover[J]. Catalysis Reviews, 2010, 52(4): 411-461. [7] YOON M, YANG S Y, HICKE C, et al. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage[J]. Physical Review Letters, 2008, 100(20): 206806. [8] ZHENG N, YANG S L, XU H X, et al. A DFT study of the enhanced hydrogen storage performance of the Li-decorated graphene nanoribbons[J]. Vacuum, 2020, 171: 109011. [9] 胡明明, 赵高峰. 锂改性点缺陷石墨烯储氢性能的第一性原理研究[J]. 原子与分子物理学报, 2019, 36(3): 443-451. HU M M, ZHAO G F. The hydrogen storage properties of lithium decorated point defect in graphene: a theoretical study[J]. Journal of Atomic and Molecular Physics, 2019, 36(3): 443-451 (in Chinese). [10] 安 博. Ca修饰石墨烯储氢性能的第一性原理研究[J]. 人工晶体学报, 2015, 44(1): 256-261. AN B. First-principles study on hydrogen storage property of calcium-decorated graphene[J]. Journal of Synthetic Crystals, 2015, 44(1): 256-261 (in Chinese). [11] 元丽华, 巩纪军, 王道斌, 等. 碱金属修饰的多孔石墨烯的储氢性能[J]. 物理学报, 2020, 69(6): 068802. YUAN L H, GONG J J, WANG D B, et al. Hydrogen storage capacity of alkali metal atoms decorated porous graphene[J]. Acta Physica Sinica, 2020, 69(6): 068802 (in Chinese). [12] PUTUNGAN D B, LIN S H, WEI C M, et al. Li adsorption, hydrogen storage and dissociation using monolayer MoS2: an ab initio random structure searching approach[J]. Physical Chemistry Chemical Physics, 2015, 17(17): 11367-11374. [13] SONG N H, WANG Y S, GAO H Y, et al. Electric field improved hydrogen storage of Ca-decorated monolayer MoS2[J]. Physics Letters A, 2015, 379(9): 815-819. [14] TANG Z K, LI X B, ZHANG D Y, et al. Two-dimensional square-pyramidal VO2 with tunable electronic properties[J]. Journal of Materials Chemistry C, 2015, 3(13): 3189-3197. [15] LIN L, HU C C, XU S W, et al. First-principle investigation of CO adsorption on Pd-loaded VO2 monolayer[J]. Materials Today Communications, 2022, 32: 103681. [16] ATACA C, ŞAHIN H, CIRACI S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure[J]. The Journal of Physical Chemistry C, 2012, 116(16): 8983-8999. [17] WANG Y S, SONG N H, SONG X Y, et al. Metallic VO2 monolayer as an anode material for Li, Na, K, Mg or Ca ion storage: a first-principle study[J]. RSC Advances, 2018, 8(20): 10848-10854. [18] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [19] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [21] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [22] 王丽春, 张志才, 马良财, 等. Rb原子修饰缺陷h-BN单层储氢性能的第一性原理研究[J]. 原子与分子物理学报, 2022, 39(6): 151-158. WANG L C, ZHANG Z C, MA L C, et al. First-principles study on hydrogen storage property of Rb-decorated defective h-BN monolayer[J]. Journal of Atomic and Molecular Physics, 2022, 39(6): 151-158 (in Chinese). [23] MA L C, WANG L C, SUN Y R, et al. First-principles study of hydrogen storage on Ca-decorated defective boron nitride nanosheets[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128: 114588. [24] NIU J, RAO B K, JENA P. Binding of hydrogen molecules by a transition-metal ion[J]. Physical Review Letters, 1992, 68(15): 2277-2280. [25] KUBAS G J. Metal-dihydrogen and σ-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin π bonding[J]. Journal of Organometallic Chemistry, 2001, 635(1/2): 37-68. [26] WANG Y S, JI Y, LI M, et al. Li and Ca co-decorated carbon nitride nanostructures as high-capacity hydrogen storage media[J]. Journal of Applied Physics, 2011, 110(9): 094311. [27] WU Q, SHI M M, HUANG X, et al. A first-principles study of Li and Na co-decorated T4, 4, 4-graphyne for hydrogen storage[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8104-8112. [28] YUAN L H, WANG D B, GONG J J, et al. First-principles study of V-decorated porous graphene for hydrogen storage[J]. Chemical Physics Letters, 2019, 726: 57-61. [29] CHEN X F, WANG L, ZHANG W T, et al. Ca-decorated borophene as potential candidates for hydrogen storage: a first-principle study[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20036-20045. [30] CHASE JR M W. NIST-JANAF thermochemical tables fourth edition[J]. Journal of Physical and Chemical Reference Data Monograph,1998. [31] 张志才, 马良财. Li原子修饰缺陷蓝磷单层储氢性能的第一性原理研究[J]. 四川大学学报(自然科学版), 2022, 59(5): 104-112. ZHANG Z C, MA L C. First-principles study on hydrogen storage performance of Li atom modified defect blue phosphorus monolayer[J]. Journal of Sichuan University (Natural Science Edition), 2022, 59(5): 104-112 (in Chinese). [32] WANG Y, LI A, WANG K A, et al. Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium[J]. Journal of Materials Chemistry, 2010, 20(31): 6490-6494. [33] REYHANI A, MORTAZAVI S Z, MIRERSHADI S, et al. Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions[J]. The Journal of Physical Chemistry C, 2011, 115(14): 6994-7001. [34] MEHRABI M, PARVIN P, REYHANI A, et al. Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods[J]. Materials Research Express, 2017, 4(9): 095030. [35] GU J, ZHANG X P, FU L, et al. Study on the hydrogen storage properties of the dual active metals Ni and Al doped graphene composites[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6036-6044. |