[1] 王占国, 郑有炓. 半导体材料研究进展. 第一卷[M]. 北京: 高等教育出版社, 2012. WANG Z G, ZHENG Y D. Research progress of semiconductor materials. Volume 1[M]. Beijing: Higher Education Press, 2012 (in Chinese) [2] 凌 玲. 半导体材料的发展现状[J]. 新材料产业, 2003(6): 6-10. LING L. Development status of semiconductor materials[J]. Advanced Materials Industry, 2003(6): 6-10 (in Chinese). [3] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. [4] WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215. [5] GREEN A J, CHABAK K D, HELLER E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped: Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2016, 37(7): 902-905. [6] YANG J C, AHN S, REN F, et al. High breakdown voltage (-201) β-Ga2O3 Schottky rectifiers[J]. IEEE Electron Device Letters, 2017, 38(7): 906-909. [7] ZHOU H, SI M W, ALGHAMDI S, et al. High-performance depletion/enhancement-mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm[J]. IEEE Electron Device Letters, 2017, 38(1): 103-106. [8] CHASE A O. Growth of β-Ga2O3 by the verneuil technique[J]. Journal of the American Ceramic Society, 1964, 47(9): 470. [9] SUZUKI N, OHIRA S, TANAKA M, et al. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal[J]. Physica Status Solidi C, 2007, 4(7): 2310-2313. [10] OHIRA S, SUZUKI N, ARAI N, et al. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing[J]. Thin Solid Films, 2008, 516(17): 5763-5767. [11] UEDA N, HOSONO H, WASEDA R, et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals[J]. Applied Physics Letters, 1997, 70(26): 3561-3563. [12] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11): 8506-8509. [13] UECKER R. The historical development of the Czochralski method[J]. Journal of Crystal Growth, 2014, 401: 7-24. [14] IRMSCHER K, GALAZKA Z, PIETSCH M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110(6): 063720. [15] HOSSAIN A, DOWDY A, BOLOTNIKOV A E, et al. Topographic evaluation of the effect of passivation in improving the performance of CdZnTe detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2941-2946. [16] WANG T, JIE W Q, XU Y D, et al. Characterization of CdZnTe crystal grown by bottom-seeded Bridgman and Bridgman accelerated crucible rotation techniques[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: s622-s625. [17] YANG R, JIE W Q, LIU H. Growth of ZnTe single crystals from Te solution by vertical Bridgman method with ACRT[J]. Journal of Crystal Growth, 2014, 400: 27-33. [18] SHIMAMURA K, VILLORA E G, MURAMATU K, et al. Optoelectronic single-crystal candidates for UV/VUV light sources(Crystal growth technology of fluoride and oxide developed from the viewpoint of their material and functional properties)[J]. Journal of the Japanese Association of Crystal Growth, 2006, 33:147-154. [19] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3Single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11): 8506-8509. [20] KURAMATA A, KOSHI K, WATANABE S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A2. [21] ALTUNTAS H, DONMEZ I, OZGIT-AKGUN C, et al. Effect of postdeposition annealing on the electrical properties of β-Ga2O3 thin films grown on p-Si by plasma-enhanced atomic layer deposition[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2014, 32(4): 041504. [22] ALTUNTAS H, DONMEZ I, OZGIT-AKGUN C, et al. Electrical characteristics of β-Ga2O3 thin films grown by PEALD[J]. Journal of Alloys and Compounds, 2014, 593: 190-195. [23] RAMACHANDRAN R K, DENDOOVEN J, BOTTERMAN J, et al. Correction: plasma enhanced atomic layer deposition of Ga2O3 thin films[J]. Journal of Materials Chemistry A, 2015, 3(2): 916. [24] LI Y B, TOKIZONO T, LIAO M, et al. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection[J]. Advanced Functional Materials, 2010, 20(22): 3972-3978. [25] SASAKI K, KURAMATA A, MASUI T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy[J]. Applied Physics Express, 2012, 5(3): 035502. [26] ORITA M, HIRAMATSU H, OHTA H, et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures[J]. Thin Solid Films, 2002, 411(1): 134-139. [27] ORITA M, OHTA H, HIRANO M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films[J]. Applied Physics Letters, 2000, 77(25): 4166-4168. [28] KONISHI K, GOTO K, TOGASHI R, et al. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2018, 492: 39-44. [29] GOTTSCHALCH V, MERGENTHALER K, WAGNER G, et al. Growth of β-Ga2O3 on Al2O3 and GaAs using metal-organic vapor-phase epitaxy[J]. Physica Status Solidi (a), 2009, 206(2): 243-249. [30] HUANG C Y, HORNG R H, WUU D S, et al. Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition[J]. Applied Physics Letters, 2013, 102(1): 11119.1-11119.3. [31] DE SANTI C, FABRIS E, CARIA A, et al. Trapping processes and band discontinuities in Ga2O3 FinFETs investigated by dynamic characterization and optically-assisted measurements[C]//SPIE OPTO. Proc SPIE 11687, Oxide-Based Materials and Devices XII, Online Only. 2021, 11687: 15-22. [32] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504-013504-3. [33] WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215. [34] 林志立, 卢钱杰, 易新华, 等. 高压水射流技术的发展与应用[J]. 中国科技产业, 2021(5): 46-47. LIN Z L, LU Q J, YI X H, et al. Development and application of high pressure water jet technology[J]. Science & Technology Industry of China, 2021(5): 46-47 (in Chinese). [35] 顾承珠, 贺云花. 高压水射流切割技术和磨料水射流切割技术的机理分析与研究[J]. 煤矿机械, 2004, 25(3): 48-49. GU C Z, HE Y H. The analysis and study of the mechanism of water jet cutting and abrasive water jet cutting[J]. Coal Mine Machinery, 2004, 25(3): 48-49 (in Chinese). [36] OHBA E, KOBAYASHI T, TAISHI T, et al. Growth of (1 0 0), (0 1 0) and (0 0 1) β-Ga2O3 single crystals by vertical Bridgman method[J]. Journal of Crystal Growth, 2021, 556: 125990. [37] LI P K, BU Y Z, CHEN D Y, et al. Investigation of the crack extending downward along the seed of the β-Ga2O3 crystal grown by the EFG method[J]. CrystEngComm, 2021, 23(36): 6300-6306. [38] MU W X, JIA Z T, YIN Y R, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453-458. [39] KASU M, HANADA K, MORIBAYASHI T, et al. Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202BB. [40] OGAWA K, OGAWA N, KOSAKA R, et al. AFM observation of etch-pit shapes on β-Ga2O3 (001) surface formed by molten alkali etching[J]. Materials Science Forum, 2020, 1004: 512-518. |