JOURNAL OF SYNTHETIC CRYSTALS ›› 2023, Vol. 52 ›› Issue (7): 1270-1285.
Special Issue: 激光与非线性光学晶体
• High-Throughput Syntheses and Characterizations of Laser and Nonlinear Optical Crystals • Previous Articles Next Articles
CHENG Xiyue1,2, MI Hanxiang1, HONG Maochun1,2, DENG Shuiquan1,2
Received:2023-05-05
Online:2023-07-15
Published:2023-08-16
| [1] SHEN Y R. The principles of nonlinear optics[M]. New York: J Wiley, 1984. [2] BOYD R W. Nonlinear optics[M]. 2nd ed. San Diego, CA: Academic Press, 2003. [3] CHEN C T, SASAKI T, LI R K, et al. Nonlinear optical borate crystals[M]. Germany: Wiley, 2012. [4] WU K, YANG Y, GAO L H. A review on phase transition and structure-performance relationship of second-order nonlinear optical polymorphs[J]. Coordination Chemistry Reviews, 2020, 418: 213380. [5] YAN M, XUE H G, GUO S P. Recent achievements in lone-pair cation-based infrared second-order nonlinear optical materials[J]. Crystal Growth & Design, 2021, 21(1): 698-720. [6] CHEN H, WEI W B, LIN H, et al. Transition-metal-based chalcogenides: a rich source of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2021, 448: 214154. [7] CHEN J, HU C L, KONG F, et al. High-performance second-harmonic-generation (SHG) materials: new developments and new strategies[J]. Accounts of Chemical Research, 2021, 54(12): 2775-2783. [8] MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202. [9] ZHAO J, MEI D J, WANG W K, et al. Recent advances in nonlinear optical rare earth structures[J]. Journal of Rare Earths, 2021, 39(12): 1455-1466. [10] CHEN H, RAN M Y, WEI W B, et al. A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications[J]. Coordination Chemistry Reviews, 2022, 470: 214706. [11] LI C X, MENG X H, LI Z A, et al. Hg-based chalcogenides: an intriguing class of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2022, 453: 214328. [12] LUO X Y, LI Z, GUO Y W, et al. Recent progress on new infrared nonlinear optical materials with application prospect[J]. Journal of Solid State Chemistry, 2019, 270: 674-687. [13] CAI W B, ABUDURUSULI A, XIE C W, et al. Toward the rational design of mid-infrared nonlinear optical materials with targeted properties via a multi-level data-driven approach[J]. Advanced Functional Materials, 2022, 32(23): 2200231. [14] WU M F, TIKHONOV E, TUDI A, et al. Target-driven design of deep-UV nonlinear optical materials via interpretable machine learning[J]. Advanced Materials, 2023, 35(23): e2300848. [15] BIAN Q, YANG Z H, WANG Y, et al. Predicting global minimum in complex beryllium borate system for deep-ultraviolet functional optical applications[J]. Scientific Reports, 2016, 6: 34839. [16] BIAN Q A, YANG Z H, WANG Y C, et al. Computer-assisted design of a superior Be2BO3F deep-ultraviolet nonlinear-optical material[J]. Inorganic Chemistry, 2018, 57(10): 5716-5719. [17] ZHANG B B, TIKHONOV E, XIE C W, et al. Prediction of fluorooxoborates with colossal second harmonic generation (SHG) coefficients and extremely wide band gaps: towards modulating properties by tuning the BO3/BO3F ratio in layers[J]. Angewandte Chemie International Edition, 2019, 58(34): 11726-11730. [18] HOU D W, NISSIMAGOUDAR A S, BIAN Q A, et al. Prediction and characterization of NaGaS2, a high thermal conductivity mid-infrared nonlinear optical material for high-power laser frequency conversion[J]. Inorganic Chemistry, 2019, 58(1): 93-98. [19] WANG R, LIANG F, LIN Z S. Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances[J]. Scientific Reports, 2020, 10: 3486. [20] KANG L, ZHOU M L, YAO J Y, et al. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis[J]. Journal of the American Chemical Society, 2015, 137(40): 13049-13059. [21] ZHANG Z Y, LIU X, SHEN L, et al. Machine learning with multilevel descriptors for screening of inorganic nonlinear optical crystals[J]. The Journal of Physical Chemistry C, 2021, 125(45): 25175-25188. [22] FAN Z, SUN Z X, WANG A, et al. Machine learning regression model for predicting the formation energy of nonlinear optical crystals[J]. Advanced Theory and Simulations, 2023, 6(3): 2200883. [23] CURTAROLO S, HART G L W, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12(3): 191-201. [24] DE PABLO J J, JACKSON N E, WEBB M A, et al. New frontiers for the materials genome initiative[J]. NPJ Computational Materials, 2019, 5: 41. [25] 林哲帅, 吴以成. 非线性光学晶体探索的理论方法发展[J]. 人工晶体学报, 2019, 48(10): 1773-1781. LIN Z S, WU Y C. Development of theoretical methods for nonlinear optical crystals exploration[J]. Journal of Synthetic Crystals, 2019, 48(10): 1773-1781 (in Chinese). [26] 杨志华, 潘世烈. 新型非线性光学晶体设计及预测研究进展[J]. 人工晶体学报, 2019, 48(7): 1173-1189. YANG Z H, PAN S L. Recent research progress of design and prediction of new nonlinear optical crystals[J]. Journal of Synthetic Crystals, 2019, 48(7): 1173-1189 (in Chinese). [27] JIANG X M, DENG S Q, WHANGBO M H, et al. Material research from the viewpoint of functional motifs[J]. National Science Review, 2022, 9(7): nwac017. [28] AVERSA C, SIPE J E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis[J]. Physical Review B, 1995, 52(20): 14636-14645. [29] RASHKEEV S N, LAMBRECHT W R L, SEGALL B. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors[J]. Physical Review B, 1998, 57(7): 3905-3919. [30] SHARMA S, AMBROSCH-DRAXL C. Second-harmonic optical response from first principles[J]. Physica Scripta, 2004, T109: 128. [31] CHEN C T, WU Y C, LI R K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series[J]. International Reviews in Physical Chemistry, 1989, 8(1): 65-91. [32] VEITHEN M, GONZE X, GHOSEZ P. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory[J]. Physical Review B, 2005, 71(12): 125107. [33] LI Z, LIU Q, HAN S J, et al. Nonlinear electronic polarization and optical response in borophosphate BPO4[J]. Physical Review B, 2016, 93(24): 245125. [34] LI Z, LIU Q, WANG Y, et al. Second-harmonic generation in noncentrosymmetric phosphates[J]. Physical Review B, 2017, 96(3): 035205. [35] LI J, DUAN C G, GU Z Q, et al. First-principles calculations of the electronic structure and optical properties of LiB3O5, CsB3O5, and BaB2O4 crystals[J]. Physical Review B, 1998, 57(12): 6925. [36] DUAN C G, LI J, GU Z Q, et al. Interpretation of the nonlinear optical susceptibility of borate crystals from first principles[J]. Physical Review B, 1999, 59(1): 369-372. [37] DUAN C G, LI J, GU Z Q, et al. First-principles calculation of the second-harmonic-generation coefficients of borate crystals[J]. Physical Review B, 1999, 60(13): 9435-9443. [38] LIN J A, LEE M H, LIU Z P, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals[J]. Physical Review B, 1999, 60(19): 13380-13389. [39] TRAN T T, HE J G, RONDINELLI J M, et al. RbMgCO3F: a new beryllium-free deep-ultraviolet nonlinear optical material[J]. Journal of the American Chemical Society, 2015, 137(33): 10504-10507. [40] WU H P, YU H W, YANG Z H, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response[J]. Journal of the American Chemical Society, 2013, 135(11): 4215-4218. [41] LI Z H, ZHANG A M, LUO H G. The microscopic origin of second harmonic generation response: the spatial structure of instantaneous dipole moments in electron excitation[J]. Angewandte Chemie International Edition, 2022, 61(44): e202212125. [42] LI Z H, DENG S Q, WHANGBO M H, et al. Orbital projection technique to explore the materials genomes of optical susceptibilities[J]. AIP Advances, 2022, 12(5): 055206. [43] CHENG X Y, WHANGBO M H, GUO G C, et al. The large second-harmonic generation of LiCs2PO4 is caused by the metal-cation-centered groups[J]. Angewandte Chemie International Edition, 2018, 57(15): 3933-3937. [44] CHENG X Y, LI Z H, WU X T, et al. Key factors controlling the large second harmonic generation in nonlinear optical materials[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9434-9439. [45] CHENG X Y, ZHANG Y P, LIU L J, et al. Structure and origin of the second-harmonic generation response of nonlinear optical material Sr2Be2B2O7[J]. The Journal of Physical Chemistry Letters, 2021, 12(46): 11399-11405. [46] ALMOUSSAWI B, YAO W D, GUO S P, et al. Negative second harmonic response of Sn4+ in the fresnoite oxysulfide Ba2SnSSi2O7[J]. Chemistry of Materials, 2022, 34(10): 4375-4383. [47] JIA M H, CHENG X Y, WHANGBO M H, et al. Second harmonic generation responses of KH2PO4: importance of K and breaking down of Kleinman symmetry[J]. RSC Advances, 2020, 10(44): 26479-26485. [48] CAI Z W, CHENG X Y, WHANGBO M H, et al. The partition principles for atomic-scale structures and their physical properties: application to the nonlinear optical crystal material KBe2BO3F2[J]. Physical Chemistry Chemical Physics, 2020, 22(34): 19299-19306. [49] CHENG X Y, WHANGBO M H, HONG M C, et al. Dependence of the second-harmonic generation response on the cell volume to band-gap ratio[J]. Inorganic Chemistry, 2019, 58(15): 9572-9575. [50] GUO S P, CHENG X Y, SUN Z D, et al. Large second harmonic generation (SHG) effect and high laser-induced damage threshold (LIDT) observed coexisting in gallium selenide[J]. Angewandte Chemie International Edition, 2019, 58(24): 8087-8091. [51] YE R P, CHENG X Y, LIU B W, et al. Strong nonlinear optical effect attained by atom-response-theory aided design in the Na2MIIMIV2Q6 (MII=Zn, Cd; MIV=Ge, Sn; Q=S, Se) chalcogenide system[J]. Journal of Materials Chemistry C, 2020, 8: 1244-1247. [52] YAO W D, CHENG X Y, GUO S P, et al. Phase competition and strong SHG responses of the Li2MIIMIVSe4 family: atom response theory predictions versus experimental results[J]. Chemistry of Materials, 2023, 35(3): 1159-1167. [53] 陈创天. 氧化物型晶体电光和非线性光学效应的阴离子配位基团理论[J]. 中国科学, 1977, 7(6): 579-593. CHEN C T. Anion coordination group theory of electro-optic and nonlinear optical effects of oxide crystals[J]. Scientia Sinica, 1977, 7(6): 579-593 (in Chinese). [54] 郭国聪, 姚元根, 吴克琛, 等. 结构敏感功能材料的基础研究[J]. 化学进展, 2001, 13(2): 151-155. GUO G C, YAO Y G, WU K C, et al. Studies on the structure-sensitive functional materials[J]. Progress in Chemistry, 2001, 13(2): 151-155 (in Chinese). [55] ECONOMOU E N. Green’s functions in quantum physics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979. [56] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen Der Physik, 1927, 389(20): 457-484. [57] SUTTON A P, FINNIS M W, PETTIFOR D G, et al. The tight-binding bond model[J]. Journal of Physics C: Solid State Physics, 1988, 21(1): 35-66. [58] DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations[J]. The Journal of Physical Chemistry, 1993, 97(33): 8617-8624. [59] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939. [60] SHEN Y G, YANG Y, ZHAO S G, et al. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation[J]. Chemistry of Materials, 2016, 28(19): 7110–7116. [61] LI L, WANG Y, LEI B H, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response[J]. Journal of the American Chemical Society, 2016, 138(29): 9101-9104. [62] JIANG X X, ZHAO S G, LIN Z S, et al. The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals[J]. Journal of Materials Chemistry C, 2014, 2(3): 530-537. [63] KLEINMAN D A. Nonlinear dielectric polarization in optical media[J]. Physical Review, 1962, 126(6): 1977-1979. [64] CHEN C T, WANG Y B, WU B C, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7[J]. Nature, 1995, 373(6512): 322-324. [65] KESZLER D. Borates for optical frequency conversion[J]. Current Opinion in Solid State & Materials Science, 1996, 1: 204-211. [66] HE M, KIENLE L, SIMON A, et al. Re-examination of the crystal structure of Na2Al2B2O7: stacking faults and twinning[J]. Journal of Solid State Chemistry, 2004, 177(9): 3212-3218. [67] MENG X Y, WEN X H, LIU G L. Structure and stacking faults in Sr2Be2B2O7 crystal[J]. Journal of the Korean Physical Society, 2008, 52(9(4)): 1277-1280. [68] ZHAO S G, KANG L, SHEN Y G, et al. Designing a beryllium-free deep-ultraviolet nonlinear optical material without a structural instability problem[J]. Journal of the American Chemical Society, 2016, 138(9): 2961-2964. [69] 徐 滔. 水热法KBBF族和SBBO晶体生长与结构性能研究[D]. 北京: 中国科学院大学, 2015. XU T. Study on growth, structure and properties of hydrothermal KBBF family and SBBO crystals[D].Beijing: University of Chinese Academy of Sciences, 2015 (in Chinese). [70] LIU B W, JIANG X M, WANG G E, et al. Oxychalcogenide BaGeOSe2: highly distorted mixed-anion building units leading to a large second-harmonic generation response[J]. Chemistry of Materials, 2015, 27(24): 8189-8192. [71] SALTER E J T, BLANDY J N, CLARKE S J. Crystal and magnetic structures of the oxide sulfides CaCoSO and BaCoSO[J]. Inorganic Chemistry, 2016, 55(4): 1697-1701. [72] WANG R Q, LIANG F, WANG F K, et al. Sr6Cd2Sb6O7S10: strong SHG response activated by highly polarizable Sb/O/S groups[J]. Angewandte Chemie, 2019, 58(24): 8078-8081. [73] KAGEYAMA H, HAYASHI K, MAEDA K, et al. Expanding frontiers in materials chemistry and physics with multiple anions[J]. Nature Communications, 2018, 9: 772. [74] CLARK D J, ZHANG J H, CRAIG A J, et al. The Kurtz-Perry powder technique revisited: a case study on the importance of reference quality and broadband nonlinear optical measurements using LiInSe2[J]. Journal of Alloys and Compounds, 2022, 917: 165381. [75] YANG T T, HUANG X L, CHENG X Y, et al. Prediction of large second harmonic generation in the metal-oxide/organic hybrid compound CuMoO3(p2c)[J]. Symmetry, 2022, 14(4): 824. [76] ABUDURUSULI A, LI J J, PAN S L. A review on the recently developed promising infrared nonlinear optical materials[J]. Dalton Transactions, 2021, 50(9): 3155-3160. [77] GAO L H, XU J W, TIAN X Y, et al. AgGaSe2-inspired nonlinear optical materials: tetrel selenides of alkali metals and mercury[J]. Chemistry of Materials, 2022, 34(13): 5991-5998. |
| [1] | MO Qiuyan, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Adsorption of SO2 and CO on ReS2 Surface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 107-114. |
| [2] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
| [3] | WANG Yunjie, HE Zhihao, DING Jiafu, SU Xin. Influence of Cations on the Structural Framework and the Origin of Birefringence in X2(PO4)2 (X=Ba, Pb) and XPO4 (X=Y, Bi) [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 85-94. |
| [4] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
| [5] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
| [6] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
| [7] | MO Qiuyan, OU Manlin, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Effect of VI Group Elements Modification on the Electronic Properties of Two-Dimensional AlN [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1620-1628. |
| [8] | SUN Liang, ZHANG Yu, WANG Qun. Electronic Structure and Magnetic Properties of the Bulk and (001) Surface of Heusler Alloy Mn2LiGe [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1378-1385. |
| [9] | LIU Xiaoying, HUANG Haishen, SUN Li, PAN Mengmei, SHANG Zhenzhen. First-Principles Study on the Electronic and Magnetic Properties of MXene 2D Material CrVCF2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1386-1393. |
| [10] | LENG Haoning, SUN Xiaoxiao, LIU Fengju, ZHAO Xiangmin. First-Principles Study on Phase Transition Behavior of LiVO3 under High Pressure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1222-1230. |
| [11] | LI Lihua, ZHOU Longjie, LIU Shuo, WANG Hang, HUANG Jinliang. First-Principles Study on Electronic Structure and Optical Properties of SnO2 (110)/FAPbBrI2 (001) Interface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1239-1248. |
| [12] | HE Zhihao, GOU Jie, WANG Yunjie, QI Yajie, DING Jiafu, ZHANG Bo, ZHAO Xingsheng, PEI Yizhen, HOU Shuyu, SU Xin. First-Principles Study on Electronic Structure and Optical Properties of Zn-Doped Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1249-1256. |
| [13] | WANG Leilei, YIN Zhenhua, ZHANG Yunke, LIU Lei, CHEN Ming. First-Principles Study of Lead-Free Quaternary Thioiodides with Outstanding Optoelectronic Properties for Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 803-809. |
| [14] | XU Zhonghui, XU Shengyuan, LIU Chuanchuan, LIU Guogang. First-Principles Study on Photogalvanic Effect and Strain Engineering of Monolayer SnS [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 676-683. |
| [15] | LI Ping, QIN Yanjun, PANG Guowang, TANG Yuzhu, ZHANG Yao, WANG Peng, LIU Chenxi. First-Principles Study on the Photoelectric Properties of N and As Doped Two-Dimensional GeC [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 519-525. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS