JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (1): 38-50.
• Reviews • Previous Articles Next Articles
LI Hong1, LIAO Xin1,2, HOU Jing1, XU Zhong1
Received:
2023-05-21
Online:
2024-01-15
Published:
2024-01-15
CLC Number:
LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 38-50.
[1] NATIONAL renewable energy laboratory. Best research-cell effciencies[EB/OL].[2023-04-20].http://www.nrel.gov/ pv/assets/pdfs/cell-pv-eff-emergingpv-rev211214.pdf. [2] HUANG J, SHAO Y, DONG Q. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond?[J]. The Journal of Physical Chemistry Letters, 2015, 6(16): 3218-3227. [3] HUANG J, YUAN Y, SHAO Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nature Reviews Materials, 2017, 2(7): 17042. [4] WERNER J, WALTER A, RUCAVADO E, et al. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells[J]. Applied Physics Letters, 2016, 109(23): 233902. [5] ANARAKI E H, KERMANPUR A, STEIER L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10): 3128-3134. [6] BUSH K A, PALMSTROM A F, YU Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J]. Nature Energy, 2017, 2(4): 17009. [7] SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials, 2018, 17(9): 820-826. [8] YU Z, LEILAEIOUN M, HOLMAN Z. Selecting tandem partners for silicon solar cells[J]. Nature Energy, 2016, 1(11): 16137. [9] EPERON G E, LEIJTENS T, BUSH K A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps[J]. Science, 2016, 354(6314): 861-865. [10] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. [11] AGIORGOUSIS M L, SUN Y Y, ZENG H, et al. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3[J]. Journal of the American Chemical Society, 2014, 136(41): 14570-14575. [12] YIN W, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104(6): 063903. [13] STEIRER K X, SCHULZ P, TEETER G, et al. Defect tolerance in methylammonium lead triiodide perovskite[J]. ACS Energy Letters, 2016, 1(2): 360-366. [14] WALSH A, SCANLON D O, CHEN S, et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites[J]. Angewandte Chemie, 2015, 127(6): 1811-1814. [15] KIM J, LEE S H, LEE J H, et al. The role of intrinsic defects in methylammonium lead iodide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1312-1317. [16] BALL M J, PETROZZA A. Defects in perovskite-halides and their effects in solar cells[J]. Nature Energy, 2016, 1(11): 16149. [17] STRANKS S D. Nonradiative losses in metal halide perovskites[J]. ACS Energy Letters, 2017, 2(7): 1515-1525. [18] PAZOS L, XIAO T P, YABLONOVITCH E. Fundamental efficiency limit of lead iodide perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1703-1711. [19] TRESS W, MARINOVA N, INGANÄS O, et al. Predicting the open-circuit voltage of CH3NH3PbI3 Perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination[J]. Advanced Energy Materials, 2015, 5(3): 1400812. [20] SHAO Y, XIAO Z, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, 2014, 5: 5784. [21] ABATE A, SALIBA M, HOLLMAN D J, et al. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Letters, 2014, 14(6): 3247-3254. [22] SHOCKLEY W, READ W T. Statistics of the recombinations of holes and electrons[J]. Physical Review, 1952, 87(5): 835-842. [23] CAO Y, GAO F, XIANG L, et al. Defects passivation strategy for efficient and stable perovskite solar cells[J]. Advanced Materials Interfaces, 2022, 9(21): 2200179. [24] TRESS W, MARINOVA N, MOEHL T, et al. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field[J]. Energy & Environmental Science, 2015, 8(3): 995-1004. [25] CHEN B, YANG M, PRIYA S, et al. Origin of J-V hysteresis in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 905-917. [26] AZPIROZ J M, MOSCONI E, BISQUERT J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation[J]. Energy & Environmental Science, 2015, 8(7): 2118-2127. [27] EAMES C, FROST J M, BARNES P R F, et al. Ionic transport in hybrid lead iodide perovskite solar cells[J]. Nature Communications, 2015, 6: 7497. [28] YUAN Y, HUANG J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability[J]. Accounts of Chemical Research, 2016, 49(2): 286-293. [29] XING J, WANG Q, DONG Q, et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(44): 30484-30490. [30] KANG D H, PARK N G. On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis[J]. Advanced Materials, 2019, 31(34): 1805214. [31] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617. [32] BISCHAK C G, HETHERINGTON C L, WU H, et al. Origin of reversible photoinduced phase separation in hybrid perovskites[J]. Nano Letters, 2017, 17(2): 1028-1033. [33] SHEN H, OMELCHENKO S T, JACOBS D A, et al. In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells[J]. Science Advances, 2018, 4(12): eaau9711. [34] KIM H S, SEO J Y, PARK N G. Material and device stability in perovskite solar cells[J]. ChemSusChem, 2016, 9(18): 2528-2540. [35] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide[J]. Journal of the American Chemical Society, 2015, 137(27): 8696-8699. [36] ZHANG F, XIAO C, CHEN X, et al. Self-seeding growth for perovskite solar cells with enhanced stability[J]. Joule, 2019, 3(6): 1452-1463. [37] FORTUNATO E, GINLEY D, HOSONO H, et al. Transparent conducting oxides for photovoltaics[J]. MRS Bulletin, 2007, 32(3): 242-247. [38] TAYLOR M P, READEY D W, VAN HEST M F A M, et al. The remarkable thermal stability of amorphous In-Zn-O transparent conductors[J]. Advanced Functional Materials, 2008, 18(20): 3169-3178. [39] DOU B, MILLER E M, CHRISTIANS J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4960-4966. [40] BOSCARINO S, CRUPI I, MIRABELLA S, et al. TCO/Ag/TCO transparent electrodes for solar cells application[J]. Applied Physics A, 2014, 116(3): 1287-1291. [41] TORRISI G, CAVALIERE E, BANFI F, et al. Ag cluster beam deposition for TCO/Ag/TCO multilayer[J]. Solar Energy Materials and Solar Cells, 2019, 199: 114-121. [42] BAI S, GUO X, CHEN T, et al. Solution process fabrication of silver nanowire composite transparent conductive films with tunable work function[J]. Thin Solid Films, 2020, 709: 138096. [43] ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542-546. [44] MA J, YANG G, QIN M, et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells[J]. Advanced Science, 2017, 4(9): 1700031. [45] ALTINKAYA C, AYDIN E, UGUR E, et al. Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells[J]. Advanced Materials, 2021, 33(15): 2005504. [46] SEOK S I, GRÄTZEL M, PARK N G. Methodologies toward highly efficient perovskite solar cells[J]. Small, 2018, 14(20): 1704177. [47] LEIJTENS T, EPERON G E, PATHAK S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4: 2885. [48] LEE S W, KIM S, BAE S, et al. Enhanced UV stability of perovskite solar cells with a SrO interlayer[J]. Organic Electronics, 2018, 63: 343-348. [49] ZAKY A A, CHRISTOPOULOS E, GKINI K, et al. Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified titania electron transport layer[J]. Applied Catalysis B: Environmental, 2021, 284: 119714. [50] SIRIPRAPARAT A, PONCHAI J, KANJANABOOS P, et al. Efficiency enhancement of perovskite solar cells by using Ag- or Ag-Cu composite-doped surface passivation of the electron transport layer[J]. Applied Surface Science, 2021, 562: 150147. [51] LIU X, WU J, LI G, et al. Defect control strategy by bifunctional thioacetamide at low temperature for highly efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12883-12891. [52] DING B, ZHAO X, WANG S, et al. Mechanism of improving the performance of perovskite solar cells through alkali metal bis(trifluoromethanesulfonyl)imide modifying mesoporous titania electron transport layer[J]. Journal of Power Sources, 2021, 484: 229275. [53] TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326): 722-726. [54] GONG J, YANG M, REBOLLAR D, et al. Divalent anionic doping in perovskite solar cells for enhanced chemical stability[J]. Advanced Materials, 2018, 30(34): 1800973. [55] YANG G, CHEN C, YAO F, et al. Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells[J]. Advanced Materials, 2018, 30(14): 1706023. [56] WANG Z, KAMARUDIN M A, HUEY N C, et al. Interfacial sulfur functionalization anchoring SnO2 and CH3NH3PbI3 for enhanced stability and trap passivation in perovskite solar cells[J]. ChemSusChem, 2018, 11(22): 3941-3948. [57] AI Y, LIU W, SHOU C, et al. SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells[J]. Solar Energy, 2019, 194: 541-547. [58] WANG Z, WU T, XIAO L, et al. Multifunctional potassium hexafluorophosphate passivate interface defects for high efficiency perovskite solar cells[J]. Journal of Power Sources, 2021, 488: 229451. [59] BI H, LIU B, HE D, et al. Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability[J]. Chemical Engineering Journal, 2021, 418: 129375. [60] WANG H, LI F, WANG P, et al. Chlorinated fullerene dimers for interfacial engineering toward stable planar perovskite solar cells with 22.3% efficiency[J]. Advanced Energy Materials, 2020, 10(21): 2000615. [61] LIU K, CHEN S, WU J, et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells[J]. Energy & Environmental Science, 2018, 11(12): 3463-3471. [62] TIAN C, LIN K, LU J, et al. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability[J]. Small Methods, 2020, 4(5): 1900476. [63] HUANG S K, WANG Y C, KE W C, et al. Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells[J]. Journal of Materials Chemistry A, 2020, 8(44): 23607-23616. [64] SUN Y, ZHANG J, YU H, et al. Mechanism of bifunctional p-amino benzenesulfonic acid modified interface in perovskite solar cells[J]. Chemical Engineering Journal, 2021, 420: 129579. [65] TSAREV S, OLTHOF S, BOLDYREVA A G, et al. Reactive modification of zinc oxide with methylammonium iodide boosts the operational stability of perovskite solar cells[J]. Nano Energy, 2021, 83: 105774. [66] ZUO L, GU Z, YE T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer[J]. Journal of the American Chemical Society, 2015, 137(7): 2674-2679. [67] HAWASH Z, RAGA S R, SON D Y, et al. Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility[J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 3947-3953. [68] CHO K T, PAEK S, GRANCINI G, et al. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface[J]. Energy & Environmental Science, 2017, 10(2): 621-627. [69] ZHOU Q, LIANG L, HU J, et al. High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer[J]. Advanced Energy Materials, 2019, 9(12): 1802595. [70] MA C, PARK N G. Paradoxical approach with a hydrophilic passivation layer for moisture-stable, 23% efficient perovskite solar cells[J]. ACS Energy Letters, 2020, 5(10): 3268-3275. [71] LIU Y, AKIN S, PAN L, et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22[J]. Science Advances, 2019, 5(6): eaaw2543. [72] ZHU H, LIU Y, EICKEMEYER F T, et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency[J]. Advanced Materials, 2020, 32(12): 1907757. [73] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466. [74] ALHARBI E A, ALYAMANI A Y, KUBICKI D J, et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells[J]. Nature Communications, 2019, 10: 3008. [75] LUO D, YANG W, WANG Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396): 1442-1446. [76] QIAN F, YUAN S, CAI Y, et al. Novel surface passivation for stable FA0.85 MA0.15 PbI3 perovskite solar cells with 21.6% efficiency[J]. Solar RRL, 2019, 3(7): 1900072. [77] LUO J, XIA J, YANG H, et al. Novel approach toward hole-transporting layer doped by hydrophobic Lewis acid through infiltrated diffusion doping for perovskite solar cells[J]. Nano Energy, 2020, 70: 104509. [78] WU Y, YANG X, CHEN W, et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy, 2016, 1: 16148. [79] FU Q, XIAO S, TANG X, et al. Amphiphilic fullerenes employed to improve the quality of perovskite films and the stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24782-24788. [80] ZHANG H, WU Y, SHEN C, et al. Efficient and stable chemical passivation on perovskite surface via bidentate anchoring[J]. Advanced Energy Materials, 2019, 9(13): 1803573. [81] LIU L, HUANG S, LU Y, et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability[J]. Advanced Materials, 2018, 30(29): 1800544. [82] WANG R, XUE J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics[J]. Science, 2019, 366(6472): 1509-1513. [83] KOUSHIK D, VERHEES W J H, KUANG Y, et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture[J]. Energy & Environmental Science, 2017, 10(1): 91-100. [84] WANG H, ZHAO Y, WANG Z, et al. Hermetic seal for perovskite solar cells: an improved plasma enhanced atomic layer deposition encapsulation[J]. Nano Energy, 2020, 69: 104375. [85] BI D, YI C, LUO J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1: 16142. [86] CHAUDHARY B, KULKARNI A, JENA A K, et al. Poly(4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells[J]. ChemSusChem, 2017, 10(11): 2473-2479. [87] GUO P, YE Q, LIU C, et al. Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage[J]. Advanced Functional Materials, 2020, 30(28): 2002639. [88] MENG L, SUN C, WANG R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21[J]. Journal of the American Chemical Society, 2018, 140(49): 17255-17262. [89] XU W, ZHU T, WU H, et al. Poly(ethylene glycol) diacrylate as the passivation layer for high-performance perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45045-45055. [90] WANG Y, WU T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J]. Science, 2019, 365(6454): 687-691. [91] WU S, ZHANG J, LI Z, et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells[J]. Joule, 2020, 4(6): 1248-1262. [92] LIU X, CHENG Y, TANG B, et al. Shallow defects levels and extract detrapped charges to stabilize highly efficient and hysteresis-free perovskite photovoltaic devices[J]. Nano Energy, 2020, 71: 104556. [93] CHEN W, ZHOU Y, CHEN G, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(19): 1803872. [94] CHENG Y, LI M, LIU X, et al. Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells[J]. Nano Energy, 2019, 61: 496-504. [95] SHI H, LIU C, JIANG Q, et al. Effective approaches to improve the electrical conductivity of PEDOT∶PSS: a review[J]. Advanced Electronic Materials, 2015, 1(4): 1500017. [96] HU X, MENG X, ZHANG L, et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells[J]. Joule, 2019, 3(9): 2205-2218. |
[1] | LI Jianing, GE Xin, HUANG Zixuan, LIU Zhen, WANG Pengyang, SHI Biao, ZHAO Ying, ZHANG Xiaodan. Effect of Sputtered NiOx Modified by Self-Assembled Layer on Performance of Blade-Coated Wide-Bandgap Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1458-1466. |
[2] | HUANG Xiaokun, YANG Aijun, LI Jiansheng, JIANG Linqin, QIU Yu. Performance of Perovskite Solar Cells Based on CuS Hole Transport Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 485-492. |
[3] | LU Hui, WEN Qian, WANG Jiaqi, SHA Simiao, WANG Kang, SUN Weidong, WU Jiandong, MA Jinfu, HOU Chunping, SHENG Zhilin, FENG Weiguang. Research Progress of Perovskite Solar Cells Based on ZnO as Electron Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 208-219. |
[4] | WANG Chuankun, LU Chengwei, OUYANG Yujie, ZHANG Shengjun, HAO Yanling. Optimization and Numerical Simulation of Sn-Based CH3NH3SnI3 Perovskite Solar Cell [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(11): 2076-2084. |
[5] | REN Jintao, CHEN Qing, HUO Yu, WU Zhixin, YU Chunyan, ZHAI Guangmei. Effect of Acetylsalicylic Acid Passivator on the Performance of Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1042-1050. |
[6] | SUN Zongheng, SHEN Rongzong, SHI Yanbin, ZHOU Yurong, ZHOU Yuqin, LIU Fengzhen. Lithography-Free Interdigitated Back Contact Silicon Solar Cells with Solution-Processed PEDOT∶PSS as the Efficient Hole Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(8): 1534-1540. |
[7] | XING Shulin, HE Yunfei, HE Jizhuang, LI Jiahua, FU Chunlin. Current Status of Electron Transport Layer in Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 959-966. |
[8] | ZHANG Hanhong, YE Shuai, ZHANG Fan. Research Progress on Synthesis of Perovskite Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2389-2397. |
[9] | GUO Jia-hao;SHI Yan-tao;MA Ting-li. Insights on Catalytic Activities of Transition Metal Selenides as Efficient Counter Electrode Materials for Dye-sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1503-1510. |
[10] | LI Cheng-hui;ZHENG Hai-song;LIU Jun;XIAO Zhi-ming;ZHAO Yu;WEI Ai-xiang. Preparation Processes and Photovoltaic Performance of Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(7): 1288-1293. |
[11] | LI Hui;LI Zhan-feng;HAO Yu-ying;CHEN Zhi-liang;ZHANG Qi;ZHENG Xiao-lu. Carbazole-Based Hole Transporting Material and Application in Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(6): 1106-1111. |
[12] | ZHAO Shan-zhen;DING Yi;GUO Sheng;SHI Biao;YAO Xin;HOU Fu-hua;ZHENG Cui-cui;ZHANG De-kun;WEI Chang-chun;WANG Guang-cai;ZHAO Ying;ZHANG Xiao-dan. Fabrication of CuSCN Hole Transporting Layer and Its Influences on Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(5): 753-758. |
[13] | YANG Yong-yong;WANG Li-sheng;XU Wei-kang;ZHANG Yong;WANG Jia-qi;CHEN Feng-xiang. Simulation Optimizing Planar Heterojunction Perovskite Solar Cells with CsGeI3 as Hole Transport Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(5): 814-819. |
[14] | DONG En-lai;GAO Meng-di;YANG Si-wang;ZHANG Li-na;LYU Hang;ZHANG Wei;MA Jin-wen. Research on Efficiency and Stability of Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(5): 908-914. |
[15] | LIANG Ya-qian;WU Xiao-li;ZHENG Guo-yuan;CHEN Jian;LONG Fei. Research Progress of Flexible Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(4): 634-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||