[1] KANCHANAVALEERAT E, COCHET-MUCHY D, KOKTA M, et al. Crystal growth of high doped Nd∶YAG[J]. Optical Materials, 2004, 26(4): 337-341. [2] SERRANO M D, ÁLVAREZ-PÉREZ J O, ZALDO C, et al. Design of Yb3+ optical bandwidths by crystallographic modification of disordered calcium niobium gallium laser garnets[J]. Journal of Materials Chemistry C, 2017, 5(44): 11481-11495. [3] 于浩海, 潘忠奔, 张怀金, 等. 无序激光晶体及其超快激光研究进展[J]. 人工晶体学报, 2021, 50(4): 648-668. YU H H, PAN Z B, ZHANG H J, et al. Development of disordered laser crystals and their ultrafast lasers[J]. Journal of Synthetic Crystals, 2021, 50(4): 648-668 (in Chinese). [4] BROWN D C, CONE R L, SUN Y C, et al. Yb∶YAG absorption at ambient and cryogenic temperatures[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 604-612. [5] PAN H, PAN Z B, CHU H W, et al. GaAs Q-switched Nd∶CNGG lasers: operating at 4F3/2→2I11/2 and 4F3/2 →2I13/2 transitions[J]. Optics Express, 2019, 27(11): 15426-15432. [6] AULL B, JENSSEN H. Vibronic interactions in Nd∶YAG resulting in nonreciprocity of absorption and stimulated emission cross sections[J]. IEEE Journal of Quantum Electronics, 1982, 18(5): 925-930. [7] PETROV V, PETERMANN K, GRIEBNER U, et al. Continuous-wave and mode-locked lasers based on cubic sesquioxide crystalline hosts[C]//SPIE Proceedings, Laser Source and System Technology for Defense and Security II. Orlando (Kissimmee), FL. SPIE, 2006, 6216: 130-143. [8] ANTYUKHOV A M, SIDOROV A A, IVANOV I A, et al. Thermal expansion coefficients and some physical properties of calcium-niobium-gallium garnet from X-ray measurement data in the temperature range of 6-310 K[J]. Fizika Tverdogo Tela, 1985, 27(12): 3683-3685. [9] VORONKO Y K, GESSEN S B, ES’KOV N A, et al. Spectroscopic and lasing properties of calcium niobium gallium garnet activated with Cr3+ and Nd3+[J]. Soviet Journal of Quantum Electronics, 1988, 18(2): 198-201. [10] VORONKO Y K, GESSEN S B, ES’KOV N A, et al. Efficient active media based on Nd3+-activated calcium niobium gallium garnets[J]. Soviet Journal of Quantum Electronics, 1990, 20(3): 246-249. [11] SARKISOV S E, KAMINSKII A A. Optical phonon spectroscopy of heterovalent disordered Ca3(Nb, Ga)2Ga3O12 crystals with garnet structure[J]. Physica Status Solidi (a), 1988, 107(1): 365-371. [12] NAITO K, YOKOTANI A, SASAKI T, et al. Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser[J]. Applied Optics, 1993, 32(36): 7387-7390. [13] SHIMAMURA K, SUGIYAMA K, UDA S, et al. Distribution coefficient of rare-earth active ions in calcium niobium gallium garnet[J]. Japanese Journal of Applied Physics, 1995, 34(9R): 4894. [14] TSUBOI T, SHIMAMURA K, FUKUDA T. Optical properties of Er3+ ions in calcium niobium gallium garnet (CNGG) crystals[J]. Physica Status Solidi (b), 1999, 214(2): 479-486. [15] AGNESI A, DELL’ACQUA S, GUANDALINI A, et al. Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal[J]. IEEE Journal of Quantum Electronics, 2001, 37(2): 304-313. [16] VORONKO Y K, POPOV A V, SOBOL A A, et al. Yb3+ ion in calcium niobium gallium garnet crystals: nearest neighbor environment and optical spectra[J]. Inorganic Materials, 2006, 42(10): 1133-1137. [17] VORON’KO Y K, MALOV A V, NISHCHEV K N, et al. Intensity parameters for Er3+ ions in calcium-niobium-gallium garnet crystals[J]. Optics and Spectroscopy, 2007, 102(5): 722-727. [18] ZHANG H J, LIU J H, WANG J Y, et al. Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG[J]. Optics Express, 2007, 15(15): 9464. [19] XIE G Q, TANG D Y, LUO H, et al. Dual-wavelength synchronously mode-locked Nd∶CNGG laser[J]. Optics Letters, 2008, 33(16): 1872-1874. [20] YU H H, ZHANG H J, WANG Z P, et al. Continuous-wave and passively Q-switched laser performance with a disordered Nd∶CLNGG crystal[J]. Optics Express, 2009, 17(21): 19015. [21] 赵 涛, 艾 蕾, 梁团结, 等. Yb∶Ca3(NbGa)5O12晶体的坩埚下降法生长及光学性能研究[J]. 人工晶体学报, 2024, 53(4): 620-626. ZHAO T, AI L, LIANG T J, et al. Growth and optical properties of Yb∶Ca3(NbGa)5O12 crystals by bridgman method[J]. Journal of Synthetic Crystals, 2024, 53(4): 620-626 (in Chinese). [22] 王敏刚, 叶 斌, 魏 冉, 等. Er3+∶CaMoO4单晶的坩埚下降法生长与光谱性能[J]. 人工晶体学报, 2015, 44(10): 2626-2631. WANG M G, YE B, WEI R, et al. Growth and spectral properties of Er3+∶CaMoO4 single crystal by vertical Bridgman method[J]. Journal of Synthetic Crystals, 2015, 44(10): 2626-2631 (in Chinese). [23] CASTELLANO-HERNÁNDEZ E, SERRANO M D, JIMÉNEZ RIOBÓO R J, et al. Na modification of lanthanide doped Ca3Nb1.5Ga3.5O12-type laser garnets: czochralski crystal growth and characterization[J]. Crystal Growth & Design, 2016, 16(3): 1480-1491. [24] CH′ENAIS S, DRUON F, BALEMBOIS F, et al. Diode-pumped Yb∶GGG laser: comparison with Yb∶YAG[J]. Optical Materials, 2003, 22(2): 99-106. |