[1] HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4612. [2] WANG Y, RUIZ DIAZ D F, CHEN K S, et al. Materials, technological status, and fundamentals of PEM fuel cells—a review[J]. Materials Today, 2020, 32: 178-203. [3] WANG J T, ZHANG Z Z, YUE X J, et al. Independent control of water retention and acid-base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity[J]. Journal of Materials Chemistry A, 2013, 1(6): 2267-2277. [4] 高帷韬, 殷屺男, 涂自强, 等. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(增刊1): 260-268. GAO W T, YIN Q N, TU Z Q, et al. Proton transport in metal-organic frameworks and their applications in proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2022, 41(supplement 1): 260-268 (in Chinese). [5] LABERTY-ROBERT C, VALLÉ K, PEREIRA F, et al. Design and properties of functional hybrid organic-inorganic membranes for fuel cells[J]. Chemical Society Reviews, 2011, 40(2): 961-1005. [6] ZHANG H Q, HE Y K, ZHANG J K, et al. Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer[J]. Journal of Membrane Science, 2016, 505: 108-118. [7] YANG D, GATES B C. Catalysis by metal organic frameworks: perspective and suggestions for future research[J]. ACS Catalysis, 2019, 9(3): 1779-1798. [8] WANG L, ZHENG M, XIE Z G. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise[J]. Journal of Materials Chemistry B, 2018, 6(5): 707-717. [9] YOSHIDA Y, KITAGAWA H. Ionic conduction in metal-organic frameworks with incorporated ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 70-81. [10] SADAKIYO M, YAMADA T, KITAGAWA H. Hydrated proton-conductive metal-organic frameworks[J]. ChemPlusChem, 2016, 81(8): 691-701. [11] 付凤艳, 王晓红, 高志华, 等. 金属有机框架质子导体及其质子交换膜应用研究进展[J]. 人工晶体学报, 2024, 53(2): 218-230. FU F Y, WANG X H, GAO Z H, et al. Research progress on metal organic frameworks proton conductor and their applications in proton exchange membranes[J]. Journal of Synthetic Crystals, 2024, 53(2): 218-230 (in Chinese). [12] LIANG X Q, ZHANG F, FENG W, et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity[J]. Chemical Science, 2013, 4(3): 983-992. [13] BAO Y L, ZHENG J Y, ZHENG H P, et al. Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials[J]. Journal of Solid State Chemistry, 2022, 310: 123070. [14] WU B, LIN X C, GE L, et al. A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks[J]. Chemical Communications, 2013, 49(2): 143-145. [15] WANG L Y, DENG N P, WANG G, et al. Constructing amino-functionalized flower-like metal-organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39979-39990. [16] YIN C S, HE C Q, LIU Q C, et al. Free volume, gas permeation, and proton conductivity in MIL-101-SO3H/Nafion composite membranes[J]. Physical Chemistry Chemical Physic, 2019, 21(47): 25982-25992. [17] WANG J T, BAI H J, ZHANG H Q, et al. Anhydrous proton exchange membrane of sulfonated poly (ether ether ketone) enabled by polydopamine-modified silica nanoparticles[J]. Electrochimica Acta, 2015, 152: 443-455. [18] RAO Z, FENG K, TANG B B, et al. Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane[J]. Journal of Membrane Science, 2017, 533: 160-170. [19] RAO Z, TANG B B, WU P Y. Proton conductivity of proton exchange membrane synergistically promoted by different functionalized metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22597-22603. [20] FU F Y, XU H L, DONG Y, et al. Design of polyphosphazene-based graft copolystyrenes with alkylsulfonate branch chains for proton exchange membranes[J]. Journal of Membrane Science, 2015, 489: 119-128. [21] LUO T W, ZHANG Y X, XU H L, et al. Highly conductive proton exchange membranes from sulfonated polyphosphazene-graft-copolystyrenes doped with sulfonated single-walled carbon nanotubes[J]. Journal of Membrane Science, 2016, 514: 527-536. [22] LI X H, YU Y F, MENG Y Z. Novel quaternized poly(arylene ether sulfone)/nano-ZrO2 composite anion exchange membranes for alkaline fuel cells[J]. ACS Applied Materials & Interfaces, 2013, 5(4): 1414-1422. [23] FU F Y, XU H L, HE M L, et al. Composite polyphosphazene membranes doped with phosphotungstic acid and silica[J]. Chinese Journal of Polymer Science, 2014, 32(8): 996-1002. [24] YANG F, HUANG H L, WANG X Y, et al. Proton conductivities in functionalized UiO-66: tuned properties, thermogravimetry mass, and molecular simulation analyses[J]. Crystal Growth & Design, 2015, 15(12): 5827-5833. [25] 付凤艳, 程敬泉, 张 杰, 等. 季铵盐化氧化石墨烯复合磺化聚磷腈质子交换膜的制备与表征[J]. 现代化工, 2020, 40(9): 148-153. FU F Y, CHENG J Q, ZHANG J, et al. Preparation and characterization of sulfonated polyphosphazene-based proton exchange membranes containing quaternized graphene oxide[J]. Modern Chemical Industry, 2020, 40(9): 148-153 (in Chinese). [26] 万林林. UiO-66-NH2合成及其应用研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2017. WAN L L. Synthesis and application of UiO-66-NH2[D]. Ningbo: Ningbo Institute of Material Technology, Chinese Academy of Sciences, 2017 (in Chinese). |