[1] PATIL A R, VAGGE S T. Oxidation and hot corrosion behaviour of functionally graded yttria stabilized zirconia and lanthanum zirconate thermal barrier coatings[J]. Surface and Coatings Technology, 2023, 474: 130059. [2] DHOMNE S, MAHALLE A M. Thermal barrier coating materials for SI engine[J]. Journal of Materials Research and Technology, 2019, 8(1): 1532-1537. [3] SONG J B, WANG L S, DONG H, et al. Long lifespan thermal barrier coatings overview: materials, manufacturing, failure mechanisms, and multiscale structural design[J]. Ceramics International, 2023, 49(1): 1-23. [4] LIU H Y, HUANG J B, WANG Z X, et al. Composite structure of YSZ embedded in NiCoCrAlTaY bond coat induces thin and multilayered Al2O3 film to extend the thermal cycle life of thermal barrier coatings[J]. Surface and Coatings Technology, 2023, 475: 130104. [5] LAI X P, WANG J, WANG X, et al. A pure tetragonal europium-doped yttrium-stabilized zirconia thermal barrier coating: phase structure and luminescence[J]. Corrosion Communications, 2023, 12:58-63. [6] WU Y M, HONG D, ZHONG X, et al. Research progress on hafnium-based thermal barrier coatings materials[J]. Ceramics International, 2023, 49(13): 21133-21141. [7] HOSSAIN M K, RUBEL M H K, ALI AKBAR M, et al. A review on recent applications and future prospects of rare earth oxides in corrosion and thermal barrier coatings, catalysts, tribological, and environmental sectors[J]. Ceramics International, 2022, 48(22): 32588-32612. [8] 赵云松, 张 迈, 戴建伟, 等. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 77-83. ZHAO Y S, ZHANG M, DAI J W, et al. Research progress of thermal barrier coatings for aeroengine turbine blades[J]. Materials Reports, 2023, 37(6): 77-83 (in Chinese). [9] 汪 俊, 张宇轩, 种晓宇, 等. 高温热障涂层材料研究进展[J]. 中国有色金属学报, 2020, 1: 1-27. WANG J, ZHANG Y X, CHONG X Y, et al. Research progress of high-temperature thermal barrier coating materials[J]. Chinese Journal of Nonferrous Metal, 2020, 1: 1-27 (in Chinese). [10] 宗若菲, 吴福硕, 冯 晶. 稀土钽酸盐在热障涂层中的研究与应用[J]. 航空制造技术, 2019, 62(3): 20-31. ZONG R F, WU F S, FENG J. Research and application of rare earth tantalate ceramics for thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2019, 62(3): 20-31 (in Chinese). [11] 王建坤, 陈 琳, 吴 鹏, 等. 稀土钽酸盐热障涂层材料热物理性能优化[J]. 湘潭大学学报(自然科学版), 2019, 41(6): 69-87. WANG J K, CHEN L, WU P, et al. Thermo-physical properties optimization of rare earth tantalate as thermal barrier coatings[J]. Journal of Xiangtan University (Natural Science Edition), 2019, 41(6): 69-87 (in Chinese). [12] 陈 琳, 冯 晶. 稀土钽酸盐RE3TaO7和RETa3O9陶瓷热-力学性质研究进展[J]. 现代技术陶瓷, 2019, 40(6): 367-397. CHEN L, FENG J. Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 ceramics[J]. Advanced Ceramics, 2019, 40(6): 367-397 (in Chinese). [13] WU P, HU M Y, WU F S, et al. The rattler effect of phonon propagation in defect-fluorite Dy3(Nb1-xTix)O7-x/2[J]. Ceramics International, 2018, 44(17): 21998-22002. [14] CHEN L, SONG P, FENG J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics[J]. Scripta Materialia, 2018, 152: 117-121. [15] CHEN L, WU P, FENG J. Optimization thermophysical properties of TiO2 alloying Sm3TaO7 ceramics as promising thermal barrier coatings[J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 230-242. [16] ZHANG Y, GUO L, ZHAO X X, et al. Toughening effect of Yb2O3 stabilized ZrO2 doped in Gd2Zr2O7 ceramic for thermal barrier coatings[J]. Materials Science and Engineering: A, 2015, 648: 385-391. [17] WANG X Z, GUO L, ZHANG H L, et al. Structural evolution and thermal conductivities of (Gd1-xYb x)2Zr2O7 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings[J]. Ceramics International, 2015, 41(10): 12621-12625. [18] CHEN X G, LI H D, ZHANG H S, et al. Influence of Yb substitution for La on thermophysical property of La2AlTaO7 ceramics[J]. Ceramics International, 2017, 43(10): 7537-7542. [19] LEITNER J, CHUCHVALEC P, SEDMIDUBSKY' D, et al. Estimation of heat capacities of solid mixed oxides[J]. Thermochimica Acta, 2002, 395(1/2): 27-46. [20] ZHANG H S, SUN K, XU Q, et al. Thermal conductivity of (Sm1-xLax)2Zr2O7(x=0, 0.25, 0.5, 0.75 and 1) oxides for advanced thermal barrier coatings[J]. Journal of Rare Earths, 2009, 27(2): 222-226. [21] ZHANG H S, CHEN X G, LI G, et al. Influence of Gd2O3 addition on thermophysical properties of La2Ce2O7 ceramics for thermal barrier coatings[J]. Journal of the European Ceramic Society, 2012, 32(14): 3693-3700. [22] SANG W W, ZHANG H S, LIU S X, et al. Thermophysical performances of Sm2O3-doped Gd3TaO7 oxides for thermal barrier coatings[J]. Journal of the European Ceramic Society, 2023, 43(8): 3676-3683. [23] ABE R, HIGASHI M, SAYAMA K, et al. Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2[J]. The Journal of Physical Chemistry B, 2006, 110(5): 2219-2226. [24] REN X, WAN C, ZHAO M Q, et al. Mechanical and thermal properties of fine-grained quasi-eutectoid (La1-xYbx)2Zr2O7 ceramics[J]. Journal of the European Ceramic Society, 2015, 35: 3145-3154. [25] LIU Z G, OUYANG J H, ZHOU Y, et al. Influence of ytterbium- and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics[J]. Journal of the European Ceramic Society, 2009, 29(4): 647-652. |