[1] AL HAMRASHDI H, MONK S D, CHENELER D. Passive gamma-ray and neutron imaging systems for national security and nuclear non-proliferation in controlled and uncontrolled detection areas: review of past and current status[J]. Sensors, 2019, 19(11): 2638. [2] ALAM M D, NASIM S S, HASAN S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring[J]. Progress in Nuclear Energy, 2021, 140: 103918. [3] SCHLESINGER T E, TONEY J E, YOON H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material[J]. Materials Science and Engineering: R: Reports, 2001, 32(4/5): 103-189. [4] TRIBOULET R, SIFFERT P. CdTe and related compounds; physics, defects, hetero-and nano-structures, crystal growth, surfaces and applications: physics, CdTe-based nanostructures, CdTe-based semimagnetic semiconductors, defects[M]. 1st ed. Amsterdam: Elsevier, 2009. [5] CHAUDHURI S K, NAG R, KLEPPINGER J W, et al. Charge trapping effects in THM- and VGF-grown CdZnTeSe radiation detectors[J]. IEEE Transactions on Nuclear Science, 2023, 70(9): 2256-2263. [6] LI Y R, ZHA G Q, WEI D K, et al. Effect of deep-level defects on the performance of CdZnTe photon counting detectors[J]. Sensors, 2020, 20(7): 2032. [7] ZHOU C H, YANG J R, YU H X, et al. Study of the extended defects in CdZnTe crystal[J]. Journal of Crystal Growth, 2020, 544: 125725. [8] HE Y H, JIE W Q, XU Y D, et al. Matrix-controlled morphology evolution of Te inclusions in CdZnTe single crystal[J]. Scripta Materialia, 2012, 67(1): 5-8. [9] VIJAYAKUMAR P, AMALADASS E P, GANESAN K, et al. Development of travelling heater method for growth of detector grade CdZnTe single crystals[J]. Materials Science in Semiconductor Processing, 2024, 169: 107897. [10] ZHANG J J, QI Y W, LIU W P, et al. The effect of Te solution volume on the growth of CdZnTe crystals by traveling heater method[J]. Journal of Crystal Growth, 2024, 633: 127647. [11] AMMAN M, LEE J S, LUKE P N, et al. Evaluation of THM-grown CdZnTe material for large-volume gamma-ray detector applications[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 795-799. [12] HONG B Z, ZHANG S, ZHENG L L, et al. Controlling nucleation during unseeded THM growth of CdZnTe crystal[J]. Journal of Crystal Growth, 2020, 534: 125482. [13] üNAL M, BALBAŞı Ö B, KARAMAN M C, et al. Production of high-performance CdZnTe crystals grown by THM for radiation detection applications[J]. Journal of Electronic Materials, 2022, 51(9): 4675-4680. [14] üNAL M, TURAN R. A path to produce high-performance CdZnTe crystals for radiation detection applications: crystal growth by THM, surface preparation, and electrode deposition[M]//High-Z Materials for X-ray Detection. Cham: Springer International Publishing, 2023: 227-243. [15] GREENBERG J H, GUSKOV V N. Vapor pressure scanning of non-stoichiometry in Cd0.9Zn0.1Te1±δ and Cd0.85Zn0.15Te1±δ[J]. Journal of Crystal Growth, 2006, 289(2): 552-558. [16] GUSKOV V N, IZOTOV A D. Thermodynamic principles of the synthesis of CdTe, ZnTe, and CdZnTe solid solutions[J]. Inorganic Materials, 2008, 44(13): 1409-1433. [17] LIANG X Y, MIN J H, YANG S, et al. Cooling process optimization to control Te inclusions for improving CdZnTe detector performance[J]. Materials Science in Semiconductor Processing, 2015, 30: 14-17. [18] BOLOTNIKOV A E, CAMARDA G S, CARINI G A, et al. Cumulative effects of Te precipitates in CdZnTe radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 571(3): 687-698. |