[1] ZHENG Z Y, TIAN S, FENG Y X, et al. Recent advances of photocatalytic coupling technologies for wastewater treatment[J]. Chinese Journal of Catalysis, 2023, 54: 88-136. [2] LONG Z Q, LI Q G, WEI T, et al. Historical development and prospects of photocatalysts for pollutant removal in water[J]. Journal of Hazardous Materials, 2020, 395: 122599. [3] LICCARDO L, BORDIN M, SHEVERDYAEVA P M, et al. Surface defect engineering in colored TiO2 hollow spheres toward efficient photocatalysis[J]. Advanced Functional Materials, 2023, 33(22): 2370138. [4] GANIYU S O, SABLE S, GAMAL EL-DIN M. Advanced oxidation processes for the degradation of dissolved organics in produced water: a review of process performance, degradation kinetics and pathway[J]. Chemical Engineering Journal, 2022, 429: 132492. [5] 苗 慧, 朱连杰, 赵 伟, 等. 溶胶-凝胶法制备不同晶相组成TiO2及其可见光催化活性[J]. 天津理工大学学报, 2011, 27(1): 64-68. MIAO H, ZHU L J, ZHAO W, et al. Preparation of TiO2 with various phase compositions by sol-gel method and their photocatalytic activities in visible light[J]. Journal of Tianjin University of Technology, 2011, 27(1): 64-68 (in Chinese). [6] LI Z L, LI Z Q, ZUO C L, et al. Application of nanostructured TiO2 in UV photodetectors: a review[J]. Advanced Materials, 2022, 34(28): 2109083. [7] DONG Y S, FEI X N, ZHOU Y Z. Synthesis and photocatalytic activity of mesoporous-(001) facets TiO2 single crystals[J]. Applied Surface Science, 2017, 403: 662-669. [8] QUEIRÓZ A C B, SANTOS A P B, QUEIROZ T S, et al. Ciprofloxacin photodegradation by CeO2 nanostructures with different morphologies[J]. Water, Air, & Soil Pollution, 2023, 234(7): 415. [9] 杨丽娜, 周效竹, 张 熙, 等. 负载镧掺杂无定形二氧化钛的介孔光催化氧化脱硫催化剂[J]. 硅酸盐学报, 2024, 52(7): 2206-2215. YANG L N, ZHOU X Z, ZHANG X, et al. Mesoporous photocatalytic oxidation desulfurization catalyst for lanthanum doped amorphous titanium dioxide[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2206-2215 (in Chinese). [10] XING X Y, MA Y X, LI J, et al. Facile one-pot synthesis and photocatalytic properties of hierarchically structural BiVO4 with different morphologies[J]. CrystEngComm, 2014, 16(44): 10218-10226. [11] LIU J W, YOU F T, HE B W, et al. Directing the architecture of surface-clean Cu2O for CO electroreduction[J]. Journal of the American Chemical Society, 2022, 144(27): 12410-12420. [12] TANG M E, TONG Q W, LI Y M, et al. Effective and selective electrocatalytic nitrate reduction to ammonia on urchin-like and defect-enriched titanium oxide microparticles[J]. Chinese Chemical Letters, 2023, 34(12): 108410. [13] LI B W, LI Q Y, GUPTA B, et al. Boosting visible-light-driven catalytic hydrogen evolution via surface Ti3+ and bulk oxygen vacancies in urchin-like hollow black TiO2 decorated with RuO2 and Pt dual cocatalysts[J]. Catalysis Science & Technology, 2020, 10(23): 7914-7921. [14] WANG Y L, HE W J, XIONG J, et al. MIL-68 (In)-derived In2O3@TiO2 S-scheme heterojunction with hierarchical hollow structure for selective photoconversion of CO2 to hydrocarbon fuels[J]. Fuel, 2023, 331: 125719. [15] 慕 楠, 刘艳改, 惠 壮, 等. 银纳米线/二氧化钛核壳结构的制备及可见光光催化性能[J]. 硅酸盐学报, 2020, 48(9): 1460-1467. MU N, LIU Y G, HUI Z, et al. Synthesis and visible light photodegradation activity of Ag NW@TiO2 core-shell structure[J]. Journal of the Chinese Ceramic Society, 2020, 48(9): 1460-1467 (in Chinese). [16] XU S, GAO Q, HU Z Y, et al. CdS-SH/TiO2 heterojunction photocatalyst significantly improves selectivity for C—O bond breaking in lignin models[J]. ACS Catalysis, 2023, 13(21): 13941-13954. [17] NIU X D, LIU S, MEN Y, et al. TiO2 supported Pd nanoclusters with surface defects toward highly efficient hydrogenation of quinone to hydroquinone under mild conditions[J]. Molecular Catalysis, 2022, 529: 112521. [18] CHOU C S, GUO M G, LIU K H, et al. Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell[J]. Applied Energy, 2012, 92: 224-233. [19] WAN P P, HOOD Z D, ADHIKARI S P, et al. Enhancing the photoresponse and photocatalytic properties of TiO2 by controllably tuning defects across {101} facets[J]. Applied Surface Science, 2018, 434: 711-716. [20] 刘 畅, 窦 琳, 张益硕. 不同形貌硫化锡对六价铀的光催化性能及机理[J]. 有色金属(冶炼部分), 2024(5): 144-150. LIU C, DOU L, ZHANG Y S. Photocatalytic properties of and mechanism tin sulfide with different morphologies on uranium hexavalent[J]. Nonferrous Metals (Extractive Metallurgy), 2024(5): 144-150 (in Chinese). [21] XU Z J, MA R X, ZHANG C, et al. A novel quaternary ammonium structure of carbon dots modified TiO2 for fast reduction of Cr(Ⅵ) over a wide pH range under sunlight[J]. Chemical Engineering Journal, 2024, 489: 151363. [22] LERTTHANAPHOL N, PIENUTSA N, CHUSRI K, et al. One-step hydrothermal synthesis of precious metal-doped titanium dioxide-graphene oxide composites for photocatalytic conversion of CO2 to ethanol[J]. ACS Omega, 2021, 6(51): 35769-35779. [23] LAN K, WANG R C, WEI Q L, et al. Stable Ti3+ defects in oriented mesoporous titania frameworks for efficient photocatalysis[J]. Angewandte Chemie International Edition, 2020, 59(40): 17676-17683. [24] LIU W, WANG Z H, TANG X H, et al. Construction of ultrasensitive surface-enhanced Raman scattering substates based on TiO2 aerogels[J]. Advanced Optical Materials, 2023, 11(21): 2300730. [25] 杨 越, 续 可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559. YANG Y, XU K, MA X L. Catalytic mechanism of oxygen vacancy defects in metal oxides[J]. Progress in Chemistry, 2023, 35(4): 543-559 (in Chinese). [26] XIE J L, WANG S X, LU T M, et al. Evaluating high temperature photoelectrocatalysis of TiO2 model photoanode[J]. Journal of Colloid and Interface Science, 2023, 645: 765-774. [27] ZHU W C, CHEN H, ZHANG M J, et al. Defect engineering in oxides by liquid Na-K alloy for oxygen evolution reaction[J]. Applied Surface Science, 2021, 544: 148813. [28] LI Y F, CHEN T Y, ZHAO S Q, et al. Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene[J]. ACS Catalysis, 2022, 12(9): 4906-4917. [29] HAO L, HUANG H W, ZHANG Y H, et al. Oxygen vacant semiconductor photocatalysts[J]. Advanced Functional Materials, 2021, 31(25): 2100919. [30] OWOLABI T O, QAHTAN T F, ABIDEMI O R, et al. Bismuth oxychloride photocatalytic wide band gap adjustment through oxygen vacancy regulation using a hybrid intelligent computational method[J]. Materials Chemistry and Physics, 2022, 290: 126524. [31] ZHANG X D, YUE K, RAO R Z, et al. Synthesis of acidic MIL-125 from plastic waste: significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene[J]. Applied Catalysis B: Environmental, 2022, 310: 121300. [32] ZHANG X D, BI F K, ZHU Z Q, et al. The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: a combined experimental and theoretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393. [33] SHAO J, SHENG W C, WANG M S, et al. In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency[J]. Applied Catalysis B: Environmental, 2017, 209: 311-319. [34] WANG J L, WANG K, HE Z H, et al. Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance[J]. Journal of Nanostructure in Chemistry, 2022, 12(6): 1075-1087. |