JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (2): 181-193.
• Reviews • Next Articles
LU Xuesong1,2, WANG Wantang1,2,3, WANG Rong1,2, YANG Deren1,2, PI Xiaodong1,2
Received:
2023-06-25
Online:
2024-02-15
Published:
2024-02-04
CLC Number:
LU Xuesong, WANG Wantang, WANG Rong, YANG Deren, PI Xiaodong. Wet Oxidation of Semiconducting Silicon Carbide Wafers[J]. Journal of Synthetic Crystals, 2024, 53(2): 181-193.
[1] LEBEDEV A A, CHELNOKOV V E. Wide-gap semiconductors for high-power electronics[J]. Semiconductors, 1999, 33(9): 999-1001. [2] LANGPOKLAKPAM C, LIU A C, CHU K H, et al. Review of silicon carbide processing for power MOSFET[J]. Crystals, 2022, 12(2): 245. [3] WANG W T, LU X S, WU X K, et al. Chemical-mechanical polishing of 4H silicon carbide wafers[J]. Advanced Materials Interfaces, 2023, 10(13): 2202369. [4] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials[J]. Current Applied Physics, 2012, 12: S41-S46. [5] ZHU Z Z, MURATOV V, FISCHER T E. Tribochemical polishing of silicon carbide in oxidant solution[J]. Wear, 1999, 225/226/227/228/229: 848-856. [6] 梁庆瑞, 胡小波, 陈秀芳, 等. 4H-SiC的强氧化液化学机械抛光[J]. 人工晶体学报, 2015, 44(7): 1741-1747. LIANG Q R, HU X B, CHEN X F, et al. Chemical mechanical polishing of 4H-SiC with strong oxidizing slurry[J]. Journal of Synthetic Crystals, 2015, 44(7): 1741-1747 (in Chinese). [7] WANG W L, LIU W L, SONG Z T, et al. Effect of ferric nitrate on semi-insulating 4H-SiC (0001) chemical mechanical polishing[J]. ECS Journal of Solid State Science and Technology, 2022, 11(11): 114003. [8] 庞龙飞, 李晓波, 李婷婷, 等. SiC晶片超精密化学机械抛光技术[J]. 微纳电子技术, 2021, 58(11): 1035-1040. PANG L F, LI X B, LI T T, et al. Ultra precision chemical mechanical polishing technology for SiC wafer[J]. Micronanoelectronic Technology, 2021, 58(11): 1035-1040 (in Chinese). [9] CHEN G M, NI Z F, XU L J, et al. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates[J]. Applied Surface Science, 2015, 359: 664-668. [10] DENG H, ENDO K, YAMAMURA K. Competition between surface modification and abrasive polishing: a method of controlling the surface atomic structure of 4H-SiC (0001)[J]. Scientific Reports, 2015, 5: 8947. [11] KUROKAWA S, DOI T, OHNISHI O, et al. Characteristics in SiC-CMP using MnO2 slurry with strong oxidant under different atmospheric conditions[J]. MRS Online Proceedings Library, 2013, 1560(1): 1-9. [12] PAN G S, ZHOU Y, LUO G H, et al. Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(12): 5040-5047. [13] ZHOU Y, PAN G S, SHI X L, et al. Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers[J]. Tribology International, 2015, 87: 145-150. [14] 倪自丰, 陈国美, 徐来军, 等. 不同氧化剂对6H-SiC化学机械抛光的影响[J]. 机械工程学报, 2018, 54(19): 224-231. NI Z F, CHEN G M, XU L J, et al. Effect of different oxidizers on chemical mechanical polishing of 6H-SiC[J]. Journal of Mechanical Engineering, 2018, 54(19): 224-231 (in Chinese). [15] 高 飞, 李 晖, 徐永宽. 氧化剂浓度对4H-SiC化学机械抛光效果的影响[J]. 功能材料, 2016, 47(10): 10189-10192. GAO F, LI H, XU Y K. Influence of oxidant concentration on 4H-SiC chemical mechanical polishing result[J]. Journal of Functional Materials, 2016, 47(10): 10189-10192 (in Chinese). [16] HEYDEMANN V D, EVERSON W J, GAMBLE R D, et al. Chemi-mechanical polishing of on-axis semi-insulating SiC substrates[J]. Materials Science Forum, 2004, 457/458/459/460: 805-808. [17] AN J H, LEE G S, LEE W J, et al. Effect of process parameters on material removal rate in chemical mechanical polishing of 6H-SiC(0001)[J]. Materials Science Forum, 2008, 600/601/602/603: 831-834. [18] 陈国美, 倪自丰, 钱善华, 等. SiC晶片不同晶面的CMP抛光效果对比研究[J]. 人工晶体学报, 2019, 48(1): 155-159+172. CHEN G M, NI Z F, QIAN S H, et al. Influence of different crystallographic planes on CMP performance of SiC wafer[J]. Journal of Synthetic Crystals, 2019, 48(1): 155-159+172 (in Chinese). [19] HORNETZ B, MICHEL H J, HALBRITTER J. Oxidation and 6H-SiC-SiO2 interfaces[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(3): 767-771. [20] WANG W L, LIU W L, SONG Z T. Two-step chemical mechanical polishing of 4H-SiC (0001) wafer[J]. ECS Journal of Solid State Science and Technology, 2021, 10(7): 074004. [21] MATSUSHITA Y I, OSHIYAMA A. Mechanisms of initial oxidation of 4H-SiC (0001) and (000-1) surfaces unraveled by first-principles calculations[EB/OL]. 2016: arXiv: 1612.00189. https://arxiv.org/abs/1612.00189. [22] ITO A, AKIYAMA T, NAKAMURA K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: effect of crystalline surface orientations[J]. Japanese Journal of Applied Physics, 2015, 54(10): 101301. [23] XIE X N, LOH K P, YAKOLEV N, et al. Oxidation of the 3×3 6H-SiC (0001) adatom cluster: a periodic density functional theory and dynamic rocking beam analysis[J]. The Journal of Chemical Physics, 2003, 119(9): 4905-4915. [24] STARKE U, SCHARDT J, BERNHARDT J, et al. Novel reconstruction mechanism for dangling-bond minimization: combined method surface structure determination of SiC(111)-(3×3)[J]. Physical Review Letters, 1998, 80(4): 758-761. [25] IMONKA V, HÖSSINGER A, WEINBUB J, et al. ReaxFF reactive molecular dynamics study of orientation dependence of initial silicon carbide oxidation[J]. The Journal of Physical Chemistry A, 2017, 121(46): 8791-8798. [26] NEWSOME D A, SENGUPTA D, FOROUTAN H, et al. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study, part I[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121. [27] TIAN Z G, LU J, LUO Q F, et al. Chemical reaction on silicon carbide wafer (0001) and (000-1) with water molecules in nanoscale polishing[J]. Applied Surface Science, 2023, 607: 155090. [28] HSIEH C H, CHANG C Y, HSIAO Y K, et al. Recent advances in silicon carbide chemical mechanical polishing technologies[J]. Micromachines, 2022, 13(10): 1752. [29] WANG J, WANG T Q, PAN G S, et al. Effect of photocatalytic oxidation technology on GaN CMP[J]. Applied Surface Science, 2016, 361: 18-24. [30] KUBOTA A, KURIHARA K, TOUGE M. Fabrication of smooth surface on 4H-SiC substrate by ultraviolet assisted local polishing in hydrogen peroxide solution[J]. Key Engineering Materials, 2012, 523/524: 24-28. [31] YUAN Z W, HE Y, SUN X W, et al. UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer[J]. Materials and Manufacturing Processes, 2018, 33(11): 1214-1222. [32] GUO C S, WANG K, HOU S, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J]. Journal of Hazardous Materials, 2017, 323: 710-718. [33] LEE H S, KIM D I, AN J H, et al. Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS)[J]. CIRP Annals, 2010, 59(1): 333-336. [34] YAN Q S, WANG X, XIONG Q A, et al. The influences of technological parameters on the ultraviolet photocatalytic reaction rate and photocatalysis-assisted polishing effect for SiC[J]. Journal of Crystal Growth, 2020, 531: 125379. [35] 路家斌, 熊 强, 阎秋生, 等. 紫外光催化辅助SiC抛光过程中化学反应速率的影响[J]. 表面技术, 2019, 48(11): 148-158. LU J B, XIONG Q, YAN Q S, et al. Effect of chemical reaction rate in ultraviolet photocatalytic auxiliary SiC polishing process[J]. Surface Technology, 2019, 48(11): 148-158 (in Chinese). [36] ZHOU Y, PAN G S, ZOU C L, et al. Chemical mechanical polishing (CMP) of SiC wafer using photo-catalyst incorporated pad[J]. ECS Journal of Solid State Science and Technology, 2017, 6(9): 603-608. [37] OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. [38] OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16. [39] WANG W T, ZHANG B G, SHI Y H, et al. Improvement in chemical mechanical polishing of 4H-SiC wafer by activating persulfate through the synergistic effect of UV and TiO2[J]. Journal of Materials Processing Technology, 2021, 295: 117150. [40] SAKAMOTO T, TOUGE M, KUBOTA A. Polishing characteristics of 4H-SiC wafer in ultraviolet-ray irradiation assisted polishing[J]. 2012: 201-204. [41] TANAKA T, TAKIZAWA M, HATA A. Verification of the effectiveness of UV-polishing for 4H-SiC wafer using photocatalyst and cathilon[J]. International Journal of Automation Technology, 2018, 12(2): 160-169. [42] YAN Q S, WANG X, XIONG Q, et al. The influences of technological parameters on the ultraviolet photocatalytic reaction rate and photocatalysis-assisted polishing effect for SiC[J]. Journal of Crystal Growth, 2020, 531: 125379. [43] CHEN C C A, HSIEH C H. Effect of inhibiter concentration on Cu CMP slurry analyzed by a Cu-ECMP system[J]. ECS Transactions, 2010, 33(10): 107-113. [44] YIN X C, LI S J, MA G L, et al. Investigation of oxidation mechanism of SiC single crystal for plasma electrochemical oxidation[J]. RSC Advances, 2021, 11(44): 27338-27345. [45] 考政晓, 张保国, 于 璇, 等. 单晶SiC电化学腐蚀及化学机械抛光[J]. 半导体技术, 2019, 44(8): 628-634. KAO Z X, ZHANG B G, YU X, et al. Electrochemical corrosion and chemical mechanical polishing of single crystal SiC[J]. Semiconductor Technology, 2019, 44(8): 628-634 (in Chinese). [46] DENG J Y, LU J B, YAN Q S, et al. Enhancement mechanism of chemical mechanical polishing for single-crystal 6H-SiC based on Electro-Fenton reaction[J]. Diamond and Related Materials, 2021, 111: 108147. [47] DENG J Y, PAN J S, ZHANG Q X, et al. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate[J]. Surfaces and Interfaces, 2020, 21: 100730. [48] FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. [49] FU F L, XIE L P, TANG B, et al. Application of a novel strategy: advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater[J]. Chemical Engineering Journal, 2012, 189/190: 283-287. [50] LU J B, CHEN R, LIANG H Z, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction[J]. Precision Engineering, 2018, 52: 221-226. [51] 徐少平. 基于芬顿反应的单晶SiC集群磁流变化学复合抛光研究[D]. 广州: 广东工业大学, 2016. XU S P. Research on single-crystal SiC cluster magnetorheological chemical composite polishing based on Fenton reaction [D]. Guangzhou: Guangdong University of Technology, 2016 (in Chinese). [52] DENG J Y, PAN J S, ZHANG Q X, et al. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate[J]. Surfaces and Interfaces, 2020, 21: 100730. [53] KOSUGI R, ICHIMURA S, KUROKAWA A, et al. Effects of ozone treatment of 4H-SiC(0001) surface[J]. Applied Surface Science, 2000, 159/160: 550-555. [54] UNEDA M, FUJII K. Highly efficient chemical mechanical polishing method for SiC substrates using enhanced slurry containing bubbles of ozone gas[J]. Precision Engineering, 2020, 64: 91-97. [55] CAO J G, WU Y B, LI J Y, et al. A grinding force model for ultrasonic assisted internal grinding (UAIG) of SiC ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5): 875-885. [56] QU W, WANG K, MILLER M H, et al. Using vibration-assisted grinding to reduced subsurface damage[J]. Precision Engineering, 2000(4): 24. [57] ZHAO Q L, SUN Z Y, GUO B. Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 28-39. [58] HU Y, SHI D, HU Y, et al. Investigation on the material removal and surface generation of a single crystal SiC wafer by ultrasonic chemical mechanical polishing combined with ultrasonic lapping[J]. Materials, 2018, 11(10): 2022. |
[1] | CHEN Fengwu, LYU Wenli, GONG Xin, XUE Yong, GONG Xiaoliang. Progress and Prospect of Molecular Beam Epitaxy Equipment at Home and Abroad [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1494-1503. |
[2] | LEI Shasha, GONG Qiaorui, ZHAO Chengchun, SUN Xiaohui, HANG Yin. Research Progress of Wide Bandgap Semiconductor ZnGa2O4 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1289-1301. |
[3] | NI Haoran, CHEN Ya, WANG Liguang, RUI Yang, ZHAO Zehui, MA Cheng, LIU Jie, ZHANG Xingmao, ZHAO Yanxiang, YANG Shaolin. Numerical Simulation of the Effect of Heat Shield Structure on Temperature Distribution in Growing 300 mm Semiconductor Grade Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1196-1211. |
[4] | DING Tao, LI Qingwen, XU Yuqi, ZHONG Min. Research Progress and Prospect of Chalcogenide Perovskite of BaZrS3 and Its Preparation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 922-929. |
[5] | XIE Guijiu, ZHANG Wenbin, WANG Yan, SONG Zhen, ZHANG Bing. Effect of SiC Wafer Grinding Process on Surface Damage [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 967-972. |
[6] | GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge. Research Progress on the Growth of Silicon Carbide Single Crystal via Top-Seeded Solution Growth Method and Its Key Issues [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 741-759. |
[7] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[8] | XU Yuqi, LI Qingwen, ZHONG Min. Preparation of BiOI Films with High c-axis Orientation by Chemical Vapor Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 841-847. |
[9] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
[10] | ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran. Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 572-584. |
[11] | SUN Xinghan, LI Jihu, ZHANG Wei, ZENG Qunfeng, ZHANG Junfeng. Research Progress on Material Removal Non-Uniformity in Silicon Carbide Chemical Mechanical Polishing [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 585-599. |
[12] | QIAN Mengxue, ZHANG Zhirong, WANG Huadong, ZHANG Qingli, SUN Yu. Characterization Method for Internal Defects in Laser Crystals Based on Slice Beam Scanning [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 238-245. |
[13] | AN Kang, XU Guangyu, WU Haiping, ZHANG Yachen, ZHANG Yongkang, LI Lijun, LI Hong, ZHANG Xufang, LIU Fengbin, LI Chengming. Research Progress in Chemical Mechanical Polishing of Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1675-1687. |
[14] | LI Yang, CAO Kun, JIE Wanqi. Effect of Thermal Treated GaSb Substrate for Epitaxial Growth of CdZnTe Film by Close-Spaced Sublimation Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1705-1711. |
[15] | HAN Jingrui, LI Xiguang, LI Yongmei, WANG Yaohao, ZHANG Qingchun, LI Da, SHI Jianxin, YAN Honglei, HAN Yuebin, TING Hungkit. Preparation and Epitaxy Application of 8 Inch SiC Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1712-1719. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||