JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (2): 181-193.
• Reviews • Next Articles
LU Xuesong1,2, WANG Wantang1,2,3, WANG Rong1,2, YANG Deren1,2, PI Xiaodong1,2
Received:
2023-06-25
Online:
2024-02-15
Published:
2024-02-04
CLC Number:
LU Xuesong, WANG Wantang, WANG Rong, YANG Deren, PI Xiaodong. Wet Oxidation of Semiconducting Silicon Carbide Wafers[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 181-193.
[1] LEBEDEV A A, CHELNOKOV V E. Wide-gap semiconductors for high-power electronics[J]. Semiconductors, 1999, 33(9): 999-1001. [2] LANGPOKLAKPAM C, LIU A C, CHU K H, et al. Review of silicon carbide processing for power MOSFET[J]. Crystals, 2022, 12(2): 245. [3] WANG W T, LU X S, WU X K, et al. Chemical-mechanical polishing of 4H silicon carbide wafers[J]. Advanced Materials Interfaces, 2023, 10(13): 2202369. [4] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials[J]. Current Applied Physics, 2012, 12: S41-S46. [5] ZHU Z Z, MURATOV V, FISCHER T E. Tribochemical polishing of silicon carbide in oxidant solution[J]. Wear, 1999, 225/226/227/228/229: 848-856. [6] 梁庆瑞, 胡小波, 陈秀芳, 等. 4H-SiC的强氧化液化学机械抛光[J]. 人工晶体学报, 2015, 44(7): 1741-1747. LIANG Q R, HU X B, CHEN X F, et al. Chemical mechanical polishing of 4H-SiC with strong oxidizing slurry[J]. Journal of Synthetic Crystals, 2015, 44(7): 1741-1747 (in Chinese). [7] WANG W L, LIU W L, SONG Z T, et al. Effect of ferric nitrate on semi-insulating 4H-SiC (0001) chemical mechanical polishing[J]. ECS Journal of Solid State Science and Technology, 2022, 11(11): 114003. [8] 庞龙飞, 李晓波, 李婷婷, 等. SiC晶片超精密化学机械抛光技术[J]. 微纳电子技术, 2021, 58(11): 1035-1040. PANG L F, LI X B, LI T T, et al. Ultra precision chemical mechanical polishing technology for SiC wafer[J]. Micronanoelectronic Technology, 2021, 58(11): 1035-1040 (in Chinese). [9] CHEN G M, NI Z F, XU L J, et al. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates[J]. Applied Surface Science, 2015, 359: 664-668. [10] DENG H, ENDO K, YAMAMURA K. Competition between surface modification and abrasive polishing: a method of controlling the surface atomic structure of 4H-SiC (0001)[J]. Scientific Reports, 2015, 5: 8947. [11] KUROKAWA S, DOI T, OHNISHI O, et al. Characteristics in SiC-CMP using MnO2 slurry with strong oxidant under different atmospheric conditions[J]. MRS Online Proceedings Library, 2013, 1560(1): 1-9. [12] PAN G S, ZHOU Y, LUO G H, et al. Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(12): 5040-5047. [13] ZHOU Y, PAN G S, SHI X L, et al. Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers[J]. Tribology International, 2015, 87: 145-150. [14] 倪自丰, 陈国美, 徐来军, 等. 不同氧化剂对6H-SiC化学机械抛光的影响[J]. 机械工程学报, 2018, 54(19): 224-231. NI Z F, CHEN G M, XU L J, et al. Effect of different oxidizers on chemical mechanical polishing of 6H-SiC[J]. Journal of Mechanical Engineering, 2018, 54(19): 224-231 (in Chinese). [15] 高 飞, 李 晖, 徐永宽. 氧化剂浓度对4H-SiC化学机械抛光效果的影响[J]. 功能材料, 2016, 47(10): 10189-10192. GAO F, LI H, XU Y K. Influence of oxidant concentration on 4H-SiC chemical mechanical polishing result[J]. Journal of Functional Materials, 2016, 47(10): 10189-10192 (in Chinese). [16] HEYDEMANN V D, EVERSON W J, GAMBLE R D, et al. Chemi-mechanical polishing of on-axis semi-insulating SiC substrates[J]. Materials Science Forum, 2004, 457/458/459/460: 805-808. [17] AN J H, LEE G S, LEE W J, et al. Effect of process parameters on material removal rate in chemical mechanical polishing of 6H-SiC(0001)[J]. Materials Science Forum, 2008, 600/601/602/603: 831-834. [18] 陈国美, 倪自丰, 钱善华, 等. SiC晶片不同晶面的CMP抛光效果对比研究[J]. 人工晶体学报, 2019, 48(1): 155-159+172. CHEN G M, NI Z F, QIAN S H, et al. Influence of different crystallographic planes on CMP performance of SiC wafer[J]. Journal of Synthetic Crystals, 2019, 48(1): 155-159+172 (in Chinese). [19] HORNETZ B, MICHEL H J, HALBRITTER J. Oxidation and 6H-SiC-SiO2 interfaces[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(3): 767-771. [20] WANG W L, LIU W L, SONG Z T. Two-step chemical mechanical polishing of 4H-SiC (0001) wafer[J]. ECS Journal of Solid State Science and Technology, 2021, 10(7): 074004. [21] MATSUSHITA Y I, OSHIYAMA A. Mechanisms of initial oxidation of 4H-SiC (0001) and (000-1) surfaces unraveled by first-principles calculations[EB/OL]. 2016: arXiv: 1612.00189. https://arxiv.org/abs/1612.00189. [22] ITO A, AKIYAMA T, NAKAMURA K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: effect of crystalline surface orientations[J]. Japanese Journal of Applied Physics, 2015, 54(10): 101301. [23] XIE X N, LOH K P, YAKOLEV N, et al. Oxidation of the 3×3 6H-SiC (0001) adatom cluster: a periodic density functional theory and dynamic rocking beam analysis[J]. The Journal of Chemical Physics, 2003, 119(9): 4905-4915. [24] STARKE U, SCHARDT J, BERNHARDT J, et al. Novel reconstruction mechanism for dangling-bond minimization: combined method surface structure determination of SiC(111)-(3×3)[J]. Physical Review Letters, 1998, 80(4): 758-761. [25] IMONKA V, HÖSSINGER A, WEINBUB J, et al. ReaxFF reactive molecular dynamics study of orientation dependence of initial silicon carbide oxidation[J]. The Journal of Physical Chemistry A, 2017, 121(46): 8791-8798. [26] NEWSOME D A, SENGUPTA D, FOROUTAN H, et al. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study, part I[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121. [27] TIAN Z G, LU J, LUO Q F, et al. Chemical reaction on silicon carbide wafer (0001) and (000-1) with water molecules in nanoscale polishing[J]. Applied Surface Science, 2023, 607: 155090. [28] HSIEH C H, CHANG C Y, HSIAO Y K, et al. Recent advances in silicon carbide chemical mechanical polishing technologies[J]. Micromachines, 2022, 13(10): 1752. [29] WANG J, WANG T Q, PAN G S, et al. Effect of photocatalytic oxidation technology on GaN CMP[J]. Applied Surface Science, 2016, 361: 18-24. [30] KUBOTA A, KURIHARA K, TOUGE M. Fabrication of smooth surface on 4H-SiC substrate by ultraviolet assisted local polishing in hydrogen peroxide solution[J]. Key Engineering Materials, 2012, 523/524: 24-28. [31] YUAN Z W, HE Y, SUN X W, et al. UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer[J]. Materials and Manufacturing Processes, 2018, 33(11): 1214-1222. [32] GUO C S, WANG K, HOU S, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J]. Journal of Hazardous Materials, 2017, 323: 710-718. [33] LEE H S, KIM D I, AN J H, et al. Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS)[J]. CIRP Annals, 2010, 59(1): 333-336. [34] YAN Q S, WANG X, XIONG Q A, et al. The influences of technological parameters on the ultraviolet photocatalytic reaction rate and photocatalysis-assisted polishing effect for SiC[J]. Journal of Crystal Growth, 2020, 531: 125379. [35] 路家斌, 熊 强, 阎秋生, 等. 紫外光催化辅助SiC抛光过程中化学反应速率的影响[J]. 表面技术, 2019, 48(11): 148-158. LU J B, XIONG Q, YAN Q S, et al. Effect of chemical reaction rate in ultraviolet photocatalytic auxiliary SiC polishing process[J]. Surface Technology, 2019, 48(11): 148-158 (in Chinese). [36] ZHOU Y, PAN G S, ZOU C L, et al. Chemical mechanical polishing (CMP) of SiC wafer using photo-catalyst incorporated pad[J]. ECS Journal of Solid State Science and Technology, 2017, 6(9): 603-608. [37] OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. [38] OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16. [39] WANG W T, ZHANG B G, SHI Y H, et al. Improvement in chemical mechanical polishing of 4H-SiC wafer by activating persulfate through the synergistic effect of UV and TiO2[J]. Journal of Materials Processing Technology, 2021, 295: 117150. [40] SAKAMOTO T, TOUGE M, KUBOTA A. Polishing characteristics of 4H-SiC wafer in ultraviolet-ray irradiation assisted polishing[J]. 2012: 201-204. [41] TANAKA T, TAKIZAWA M, HATA A. Verification of the effectiveness of UV-polishing for 4H-SiC wafer using photocatalyst and cathilon[J]. International Journal of Automation Technology, 2018, 12(2): 160-169. [42] YAN Q S, WANG X, XIONG Q, et al. The influences of technological parameters on the ultraviolet photocatalytic reaction rate and photocatalysis-assisted polishing effect for SiC[J]. Journal of Crystal Growth, 2020, 531: 125379. [43] CHEN C C A, HSIEH C H. Effect of inhibiter concentration on Cu CMP slurry analyzed by a Cu-ECMP system[J]. ECS Transactions, 2010, 33(10): 107-113. [44] YIN X C, LI S J, MA G L, et al. Investigation of oxidation mechanism of SiC single crystal for plasma electrochemical oxidation[J]. RSC Advances, 2021, 11(44): 27338-27345. [45] 考政晓, 张保国, 于 璇, 等. 单晶SiC电化学腐蚀及化学机械抛光[J]. 半导体技术, 2019, 44(8): 628-634. KAO Z X, ZHANG B G, YU X, et al. Electrochemical corrosion and chemical mechanical polishing of single crystal SiC[J]. Semiconductor Technology, 2019, 44(8): 628-634 (in Chinese). [46] DENG J Y, LU J B, YAN Q S, et al. Enhancement mechanism of chemical mechanical polishing for single-crystal 6H-SiC based on Electro-Fenton reaction[J]. Diamond and Related Materials, 2021, 111: 108147. [47] DENG J Y, PAN J S, ZHANG Q X, et al. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate[J]. Surfaces and Interfaces, 2020, 21: 100730. [48] FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. [49] FU F L, XIE L P, TANG B, et al. Application of a novel strategy: advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater[J]. Chemical Engineering Journal, 2012, 189/190: 283-287. [50] LU J B, CHEN R, LIANG H Z, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction[J]. Precision Engineering, 2018, 52: 221-226. [51] 徐少平. 基于芬顿反应的单晶SiC集群磁流变化学复合抛光研究[D]. 广州: 广东工业大学, 2016. XU S P. Research on single-crystal SiC cluster magnetorheological chemical composite polishing based on Fenton reaction [D]. Guangzhou: Guangdong University of Technology, 2016 (in Chinese). [52] DENG J Y, PAN J S, ZHANG Q X, et al. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate[J]. Surfaces and Interfaces, 2020, 21: 100730. [53] KOSUGI R, ICHIMURA S, KUROKAWA A, et al. Effects of ozone treatment of 4H-SiC(0001) surface[J]. Applied Surface Science, 2000, 159/160: 550-555. [54] UNEDA M, FUJII K. Highly efficient chemical mechanical polishing method for SiC substrates using enhanced slurry containing bubbles of ozone gas[J]. Precision Engineering, 2020, 64: 91-97. [55] CAO J G, WU Y B, LI J Y, et al. A grinding force model for ultrasonic assisted internal grinding (UAIG) of SiC ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5): 875-885. [56] QU W, WANG K, MILLER M H, et al. Using vibration-assisted grinding to reduced subsurface damage[J]. Precision Engineering, 2000(4): 24. [57] ZHAO Q L, SUN Z Y, GUO B. Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 28-39. [58] HU Y, SHI D, HU Y, et al. Investigation on the material removal and surface generation of a single crystal SiC wafer by ultrasonic chemical mechanical polishing combined with ultrasonic lapping[J]. Materials, 2018, 11(10): 2022. |
[1] | QIAN Mengxue, ZHANG Zhirong, WANG Huadong, ZHANG Qingli, SUN Yu. Characterization Method for Internal Defects in Laser Crystals Based on Slice Beam Scanning [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 238-245. |
[2] | LIU Jingming, YANG Jun, ZHAO Youwen, YANG Cheng'ao, JIANG Dongwei, NIU Zhichuan. Research Progress of GaSb Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 1-11. |
[3] | MA Yulin, GUO Xiang, DING Zhao. Research Progress on the Preparation and Application of GaAsBi Semiconductor Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 25-37. |
[4] | XU Zheren, ZHANG Jijun, CAO Xiangzhi, LU Wei, LIU Hao, QI Yongwu. Study on Thermal Field of Growth System of CdZnTe Crystal Growth by Traveling Heater Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1589-1598. |
[5] | MENG Wenli, ZHANG Yumin, SUN Yuanhang, WANG Jianfeng, XU Ke. Influence of TiN and Ti Insertion Layer on Ohmic Contact Performance Between ITO and GaN [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1609-1616. |
[6] | WANG Liguang, RUI Yang, SHENG Wang, MA Yinshuang, MA Cheng, CHEN Weinan, ZOU Qipeng, DU Pengxuan, HUANG Liuqing, LUO Xuetao. Influence Mechanism of Crucible Rotation Rates on the Flow Field and Oxygen Concentration of the Semiconductor-Grade Czochralski Monocrystalline Silicon Melt under Transverse Magnetic Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1641-1650. |
[7] | CHEN Shaohua, MU Wenxiang, ZHANG Jin, DONG Xuyang, LI Yang, JIA Zhitai, TAO Xutang. Optical and Electrical Properties of Ni-Doped β-Ga2O3 Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1373-1377. |
[8] | CHEN Genqiang, ZHAO Xixiang, YU Zhongcheng, LI Zheng, WEI Qiang, LIN Fang, WANG Hongxing. Research Progress of Heteroepitaxial Single-Crystal Diamond and Related Electronic Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 931-944. |
[9] | ZHAO Junyi, LIU Runze, LOU Yiyang, HUO Yongheng. Basic Materials and Devices of the Deterministic Solid-State Quantum Light Sources [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 960-981. |
[10] | WANG Zhengpeng, ZHANG Chongde, SUN Xinyu, HU Tiancheng, CUI Mei, ZHANG Yijun, GONG Hehe, REN Fangfang, GU Shulin, ZHANG Rong, YE Jiandong. MOCVD Epitaxy of β-Ga2O3 Films on Off-Cut Angled Sapphire Substrates and Fabrication of Solar-Blind Ultraviolet Photodetector [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1007-1015. |
[11] | SUI Zhanren, XU Lingbo, CUI Can, WANG Rong, YANG Deren, PI Xiaodong, HAN Xuefeng. Research Progress on Numerical Simulation of Single Crystal Silicon Carbide Prepared by Top-Seeded Solution Growth Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1067-1085. |
[12] | RUI Yang, WANG Zhongbao, SHENG Wang, NI Haoran, XIONG Huan, ZOU Qipeng, CHEN Weinan, HUANG Liuqing, LUO Xuetao. Effect of Heat Shield Structure on the Distribution of Oxygen Content in 200 mm Semiconductor-Grade Czochralski Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1110-1119. |
[13] | PENG Bo, LI Qi, ZHANG Shumiao, FAN Shuwei, WANG Ruozheng, WANG Hongxing. Research Progress of Diamond Schottky Barrier Diodes [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 732-745. |
[14] | WANG Gaokai, ZHANG Xingwang. Research Progress of Epitaxial Growth of Hexagonal Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 825-841. |
[15] | QU Pengfei, JIN Peng, ZHOU Guangdi, WANG Zhen, XU Dunzhou, WU Ju, ZHENG Hongjun, WANG Zhanguo. Research Status of Iridium-Based Composite Substrates for Heteroepitaxy of Single Crystal Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 857-877. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||