JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (2): 210-217.
• Reviews • Previous Articles Next Articles
GUO Yu1,2, LIU Chunjun1, ZHANG Xinhe2, SHEN Pengyuan1, ZHANG Bo1, LOU Yanfang1, PENG Tonghua1, YANG Jian1
Received:
2023-05-29
Online:
2024-02-15
Published:
2024-02-04
[1] BRANDER R W, SUTTON R P. Solution grown SiC p-n junctions[J]. Journal of Physics D: Applied Physics, 1969, 2(3): 309-318. [2] IKEDA M, HAYAKAWA T, YAMAGIWA S, et al. Fabrication of 6H-SiC light-emitting diodes by a rotation dipping technique: electroluminescence mechanisms[J]. Journal of Applied Physics, 1979, 50(12): 8215-8225. [3] ZIEGLER G, LANIG P, THEIS D, et al. Single crystal growth of SiC substrate material for blue light emitting diodes[J]. IEEE Transactions on Electron Devices, 1983, 30(4): 277-281. [4] MATSUNAMI H, NISHINO S, ONO H. IVA-8 heteroepitaxial growth of cubic silicon carbide on foreign substrates[J]. IEEE Transactions on Electron Devices, 1981, 28(10): 1235-1236. [5] JENNINGS V J, SOMMER A, CHANG H C. The epitaxial growth of silicon carbide[J]. Journal of the Electrochemical Society, 1966, 113(7): 728. [6] CAMPBELL R B, CHU T L. Epitaxial growth of silicon carbide by the thermal reduction technique[J]. Journal of the Electrochemical Society, 1966, 113(8): 825. [7] MUENCH W V, PFAFFENEDER I. Epitaxial deposition of silicon carbide from silicon tetrachloride and hexane[J]. Thin Solid Films, 1976, 31(1/2): 39-51. [8] YOSHIDA S, SAKUMA E, OKUMURA H, et al. Heteroepitaxial growth of SiC polytypes[J]. Journal of Applied Physics, 1987, 62(1): 303-305. [9] NISHINO S, POWELL J A, WILL H A. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices[J]. Applied Physics Letters, 1983, 42(5): 460-462. [10] KURODA N, SHIBAHARA K, YOO W, et al. Step-controlled VPE growth of SiC single crystals at low temperatures[C]//Extended Abstracts of the 1987 Conference on Solid State Devices and Materials. August 25-27, 1987. Nippon Toshi Center, Tokyo, Japan. The Japan Society of Applied Physics, 1987: 032156. [11] KONG H, KIM H J, EDMOND J A, et al. Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001)[J]. MRS Proceedings, 1987, 97: 233. [12] JR A B A, ROWLAND L B. Homoepitaxial vpe growth of SiC active layers[J]. Physica Status Solidi (b), 1997, 202(1):263-279. [13] RUPP R, MAKAROV N Y, BEHNER H, et al. Silicon carbide epitaxy in a vertical CVD reactor: experimental results and numerical process simulation[J]. Physica Status Solidi (b),1997,202(1):281-304. [14] KIMOTO T, ITOH A, MATSUNAMI H. Step-controlled epitaxial growth of high-quality SiC layers[J]. Physica Status Solidi (b), 1997, 202(2): 247-262. [15] THOMAS B, BARTSCH W, STEIN R A, et al. Properties and suitability of 4H-SiC epitaxial layers grown at different CVD systems for high voltage applications[J]. Materials Science Forum, 2004, 493(457-460): 181-184. [16] LA VIA F, CAMARDA M, CANINO A, et al. Fast growth rate epitaxy by chloride precursors[J]. Materials Science Forum, 2013, 740/741/742: 167-172. [17] LARKIN D J, SRIDHARA S G, DEVATY R P, et al. Hydrogen incorporation in boron-doped 6H-SiC CVD epilayers produced using site-competition epitaxy[J]. Journal of Electronic Materials, 1995, 24(4): 289-294. [18] LARKIN D J, NEUDECK P G, POWELL J A, et al. Site-competition epitaxy for superior silicon carbide electronics[J]. Applied Physics Letters, 1994, 65(13): 1659-1661. [19] LARKIN D J. SiC dopant incorporation control using site-competition CVD[J]. Physica Status Solidi (b), 1997, 202(1): 305-320. [20] WANG R J, BHAT I B, CHOW T P. Epitaxial growth of n-type SiC using phosphine and nitrogen as the precursors[J]. Journal of Applied Physics, 2002, 92(12): 7587-7592. [21] KIMOTO T, NAKAZAWA S, HASHIMOTO K, et al. Reduction of doping and trap concentrations in 4H-SiC epitaxial layers grown by chemical vapor deposition[J]. Applied Physics Letters, 2001, 79(17): 2761-2763. [22] TSUCHIDA H, KAMATA I, JIKIMOTO T, et al. Epitaxial growth of thick 4H-SiC layers in a vertical radiant-heating reactor[J]. Journal of Crystal Growth, 2002, 237/238/239: 1206-1212. [23] BURK A A, TSVETKOV D, BARNHARDT D, et al. SiC epitaxial layer growth in a 6×150 mm warm-wall planetary reactor[J]. Materials Science Forum, 2012, 717/718/719/720: 75-80. [24] KOJIMA K, SUZUKI T, KURODA S, et al. Epitaxial growth of high-quality 4H-SiC carbon-face by low-pressure hot-wall chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2003, 42(Part 2, No. 6B): L637-L639. [25] THOMAS B, ZHANG J E,MOEGGENBORG K, et al. Progress of SiC epitaxy on 150 mm substrates[J]. Materials Science Forum, 2015, 821/822/823: 161-164. [26] MATTIA M, EGIDIO C, DANILO C, et al. Development of n-type epitaxial growth on 200 mm 4H-SiC wafers for the next generation of power devices[J]. Microelectronic Engineering, 2023, 274(1): 111976. [27] THOMAS B, ZHANG J E, CHUNG G Y, et al. Homoepitaxial chemical vapor deposition of up to 150 μm thick 4H-SiC epilayers in a 10×100 mm batch reactor[J]. Materials Science Forum, 2016, 858: 129-132. [28] KENNETH G I. Growth of very uniform silicon carbide epitaxial layers, US6063186A[P]. 1999-06-24. [29] AYEDH H M, HALLÉN A, SVENSSON B G. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: influence of the ion species[J]. Journal of Applied Physics, 2015, 118(17): 175701. [30] AYEDH H M, KVAMSDAL K E, BOBAL V, et al. Carbon vacancy control in p+-n silicon carbide diodes for high voltage bipolar applications[J]. Journal of Physics D: Applied Physics, 2021, 54(45): 455106. [31] MIYAZAWA T, TSUCHIDA H. Point defect reduction and carrier lifetime improvement of Si- and C-face 4H-SiC epilayers[J]. Journal of Applied Physics, 2013, 113(8): 083714. [32] RANA T, CHUNG G, SOUKHOJAK A, et al. Interfacial dislocation reduction by optimizing process condition in SiC epitaxy[J]. Materials Science Forum, 2022, 63(9): 99-103. [33] ZHANG X A, NAGANO M, TSUCHIDA H. Basal plane dislocations in 4H-SiC epilayers with different dopings[J]. Materials Science Forum, 2012, 725: 27-30. [34] KAMATA I, TSUCHIDA H, JIKIMOTO T, et al. Structural transformation of screw dislocations via thick 4H-SiC epitaxial growth[J]. Japanese Journal of Applied Physics, 2000, 39(12R): 6496. [35] DANIELSSON Ö, FORSBERG U, JANZÉN E. Predicted nitrogen doping concentrations in silicon carbide epitaxial layers grown by hot-wall chemical vapor deposition[J]. Journal of Crystal Growth, 2003, 250(3/4): 471-478. [36] TSVETKOV V F, ALLEN S T, KONG H S, et al. Recent progress in SiC crystal growth[C]//International Conference on Silicon Carbide and Related Materials, 1995, 142: 317. [37] LENDENMANN H, DAHLQUIST F, JOHANSSON N, et al. Long term operation of 4.5kV PiN and 2.5kV JBS diodes[J]. Materials Science Forum, 2001, 353/354/355/356: 727-730. [38] BERGMAN P, LENDENMANN H, NILSSON P Å, et al. Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes[J]. Materials Science Forum, 2001, 353/354/355/356: 299-302. [39] LENDENMANN H, BERGMAN P, DAHLQUIST F, et al. Degradation in SiC bipolar devices: sources and consequences of electrically active dislocations in SiC[J]. Materials Science Forum, 2003, 433/434/435/436: 901-906. [40] MUZYKOV P G, KENNEDY R M, ZHANG Q, et al. Physical phenomena affecting performance and reliability of 4H-SiC bipolar junction transistors[J]. Microelectronics Reliability, 2009, 49(1): 32-37. [41] SKOWRONSKI M, HA S. Degradation of hexagonal silicon-carbide-based bipolar devices[J]. Journal of Applied Physics, 2006, 99(1): 011101. [42] YANG L, ZHAO L X, WU H W, et al. Characterization and reduction of defects in 4H-SiC substrate and homo-epitaxial wafer[J]. Materials Science Forum, 2020, 1004: 387-392. [43] STAHLBUSH R E, VANMIL B L, MYERS-WARD R L, et al. Basal plane dislocation reduction in 4H-SiC epitaxy by growth interruptions[J]. Applied Physics Letters, 2009, 94(4): 041916. [44] CAPAN I, BORJANOVIC' V, PIVAC B. Dislocation-related deep levels in carbon rich p-type polycrystalline silicon[J]. Solar Energy Materials and Solar Cells, 2007, 91(10): 931-937. [45] NA M, BAHNG W, JANG H, et al. Effects of stress on the evolution of Σ-shaped dislocation arrays in a 4H-SiC epitaxial layer[J]. Journal of Applied Physics, 2021, 129(24): 245101. [46] LI Z, ZHANG X A, ZHANG Z H, et al. Microstructure of interfacial basal plane dislocations in 4H-SiC epilayers[J]. Materials Science Forum, 2019, 954: 77-81. [47] NISHIO J, KUDOU C, TAMURA K, et al. C-face epitaxial growth of 4H-SiC on quasi-150-mm diameter wafers with high throughput[J]. Materials Science Forum, 2014, 778/779/780: 109-112. [48] AOKI M, KAWANOWA H, FENG G, et al. Characterization of bar-shaped stacking faults in 4H-SiC epitaxial layers by high-resolution transmission electron microscopy[J]. Japanese Journal of Applied Physics, 2013, 52(6R): 061301. [49] CAMARDA M, CANINO A, LA MAGNA A, et al. Structural and electronic characterization of (2, 33) bar-shaped stacking fault in 4H-SiC epitaxial layers[J]. Applied Physics Letters, 2011, 98(5): 051915. [50] SUO H, YAMASHITA T, ETO K, et al. Observation of multilayer Shockley-type stacking fault formation during process of epitaxial growth on highly nitrogen-doped 4H-SiC substrate[J]. Japanese Journal of Applied Physics, 2019, 58(2): 021001. [51] ASAFUJI R, HIJIKATA Y. Generation of stacking faults in 4H-SiC epilayer induced by oxidation[J]. Materials Research Express, 2018, 5(1): 015903. [52] DONG L, SUN G S, YU J, et al. Mapping of micropipes and downfalls on 4H-SiC epilayers by Candela optical surface analyzer[C]//2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology. October 29-November 1, 2012, Xi'an, China. IEEE, 2013: 1-3. [53] KONSTANTINOV A O, HALLIN C, PÉCZ B, et al. The mechanism for cubic SiC formation on off-oriented substrates[J]. Journal of Crystal Growth, 1997, 178(4): 495-504. [54] OKADA T, KIMOTO T, YAMAI K, et al. Crystallographic defects under device-killing surface faults in a homoepitaxially grown film of SiC[J]. Materials Science and Engineering: A, 2003, 361(1/2): 67-74. [55] BENAMARA M, ZHANG X, SKOWRONSKI M, et al. Structure of the carrot defect in 4H-SiC epitaxial layers[J]. Applied Physics Letters, 2005, 86(2): 021905. [56] OKADA T, KIMOTO T, NODA H, et al. Correspondence between surface morphological faults and crystallographic defects in 4H-SiC homoepitaxial film[J]. Japanese Journal of Applied Physics, 2002, 41: 6320-6326. [57] TSUCHIDA H, KAMATA I, NAGANO M. Investigation of defect formation in 4H-SiC epitaxial growth by X-ray topography and defect selective etching[J]. Journal of Crystal Growth, 2007, 306(2): 254-261. [58] 孙国胜, 杨 霏, 柏 松, 等. 4H-碳化硅衬底及外延层缺陷术语[S]. T/CASA 004.1-2018, 北京, 2018. SUN G S, YANF F, BO S, et al. 4H-Silicon carbide substrate and epitaxial layer defect terms[S]. T/CASA 004.1-2018, Beijing, 2018 (in Chinese). [59] POWELL J A, LARKIN D J. Process-induced morphological defects in epitaxial CVD silicon carbide[J]. Physica Status Solidi (b), 1997, 202(1): 529-548. [60] KIMOTO T, CHEN Z Y, TAMURA S, et al. Surface morphological structures of 4H-, 6H- and 15R-SiC (0001) epitaxial layers grown by chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2001, 40(5R): 3315. [61] KIMOTO T, MIYAMOTO N, MATSUNAMI H. Performance limiting surface defects in SiC epitaxial p-n junction diodes[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 471-477. [62] OHTANI N, USHIO S, KANEKO T, et al. Tunneling atomic force microscopy studies on surface growth pits due to dislocations in 4H-SiC epitaxial layers[J]. Journal of Electronic Materials, 2012, 41(8): 2193-2196. [63] 孙国胜, 杨 霏, 柏 松, 等. 4H-SiC衬底及外延层缺陷图谱[S]. T/CASA 004.2-2018, 北京, 2018. SUN G S, YANF F, BO S, et al. Defect map of 4H-SiC substrate and epitaxial layer[S]. T/CASA 004.2-2018, Beijing, 2018 (in Chinese). [64] KUDOU C, ASAMIZU H, TAMURA K, et al. Influence of epi-layer growth pits on SiC device characteristics[J]. Materials Science Forum, 2015, 821/822/823: 177-180. |
[1] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[2] | ZHAO Qingsong, NIU Xiaodong, GU Xiaoying, DI Juqing. Growth and Properties of Large Size Ultra High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 34-39. |
[3] | CHEN Fengwu, LYU Wenli, GONG Xin, XUE Yong, GONG Xiaoliang. Progress and Prospect of Molecular Beam Epitaxy Equipment at Home and Abroad [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1494-1503. |
[4] | WANG Hongshuai, WANG Lei, SONG Shuhong, TAO Xutang. Dissolution Mechanism of Baloxavir Marboxil Single Crystal Based on In-Situ AFM [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1519-1527. |
[5] | LIU Shuai, XIONG Huifan, YANG Xia, YANG Deren, PI Xiaodong, SONG Lihui. Effects of Electron Irradiation on Defects of 4H-SiC MOS Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1536-1541. |
[6] | QIN Zuoyan, JIN Lei, LI Wenliang, TAN Jun, HE Guangze, WU Honglei. Regulation of AlN Crystal Growth Mode by PVT Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1542-1549. |
[7] | TANG Huazhu, XIAO Qingquan, FU Shasha, XIE Quan. Simulation on ZnS/SnS Solar Cells with Spiro-OMeTAD as Hole Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1394-1408. |
[8] | LI Haoqing, SU Yu. Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1136-1149. |
[9] | NI Haoran, CHEN Ya, WANG Liguang, RUI Yang, ZHAO Zehui, MA Cheng, LIU Jie, ZHANG Xingmao, ZHAO Yanxiang, YANG Shaolin. Numerical Simulation of the Effect of Heat Shield Structure on Temperature Distribution in Growing 300 mm Semiconductor Grade Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1196-1211. |
[10] | SHU Min, LIANG Junhui, CHEN Da, CHEN Zhao, QIN Laishun. Study on the Characteristics of MoO3-x Nanoslot SERS Substrate Prepared by Hydrothermal Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1061-1068. |
[11] | CHENG Jiahui, YANG Lei, WANG Jinnan, GONG Chunsheng, ZHANG Zesheng, JIAN Jikang. Molten KOH Etching Behaviors of Heavily Doped P-Type SiC [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 773-780. |
[12] | GUI Kaixuan, LUO Xiangjie, LIU Fangyu, ZHAO Xiaoyu. Fabrication and Electromagnetic Wave Absorption Performance of C/C Composites Modified by SiC Nanowires [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 889-898. |
[13] | KANG Jie, DING Ziyang, WANG Xiaoyan, LI Lianrong, SUN Weiyun, JIAO Can, SONG Yuepeng. Particle Size Regulation of SiC Quantum Dots Prepared by Corrosion Method and Effect of Size on Optical Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 684-691. |
[14] | WANG Yaodong, LI Xiaodong, YANG Penghui, ZHANG Huidong, LIU Xiuying, YU Jingxin. Theoretical Study on Design and Hydrogen Storage Properties of High-Valence Boron-Phosphorous Based COFs [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 730-738. |
[15] | LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 355-371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||