[1] 何晓栋. 基于声学超材料的飞机壁板隔声特性研究[D]. 长沙: 国防科技大学, 2018. HE X D. Sound insulation properties of metamaterial-based aircraft panels[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). [2] YU D L, LIU Y Z, WANG G, et al. Low frequency torsional vibration gaps in the shaft with locally resonant structures[J]. Physics Letters A, 2006, 348(3/4/5/6): 410-415. [3] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [4] 郁殿龙, 刘耀宗, 王 刚, 等. 二维声子晶体薄板的振动特性[J]. 机械工程学报, 2006, 42(2): 150-154. YU D L, LIU Y Z, WANG G, et al. Vibration property of two dimension phononic crystals thin plate[J]. Chinese Journal of Mechanical Engineering, 2006, 42(2): 150-154 (in Chinese). [5] 温激鸿, 蔡 力, 郁殿龙, 等. 声学超材料基础理论与应用[M]. 北京: 科学出版社, 2018. WEN J H, CAI L, YU D L, et al. Basic theory and application of acoustic metamaterials[M]. Beijing: Science Press, 2018 (in Chinese). [6] 靳奉华, 郭 辉, 孙 裴, 等. 方形晶格夹层板减振性能仿真与优化[J]. 人工晶体学报, 2022, 51(2): 248-255. JIN F H, GUO H, SUN P, et al. Simulation and optimization of vibration reduction performance of square lattice sandwich plate[J]. Journal of Synthetic Crystals, 2022, 51(2): 248-255 (in Chinese). [7] 陈鼎康, 李欣欣, 李应刚, 等. 局域共振船体板架超结构低频隔振特性研究[J]. 噪声与振动控制, 2023, 43(5): 221-226. CHEN D K, LI X X, LI Y G, et al. Low frequency vibration isolation characteristics of hull grillage metastructures with local resonators[J]. Noise and Vibration Control, 2023, 43(5): 221-226 (in Chinese). [8] 李 寅, 肖 勇. 声学超材料板的弯曲波带隙与减振降噪特性[J]. 噪声与振动控制, 2018, 38(增刊1): 35-40. LI Y, XIAO Y. Flexural wave band gaps and vibration attenuation characteristics of acoustic metamaterial plates[J]. Noise and Vibration Control, 2018, 38(supplement 1): 35-40 (in Chinese). [9] PENNEC Y, DJAFARI-ROUHANI B, LARABI H, et al. Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate[J]. Physical Review B, 2008, 78(10): 104105. [10] LAI Y, WU Y, SHENG P, et al. Hybrid elastic solids[J]. Nature Materials, 2011, 10(8): 620-624. [11] 吴九汇, 张思文, 沈 礼. 螺旋局域共振单元声子晶体板结构的低频振动带隙特性研究[J]. 机械工程学报, 2013, 49(10): 62-69. WU J H, ZHANG S W, SHEN L. Low-frequency vibration characteristics of periodic spiral resonators in phononic crystal plates[J]. Journal of Mechanical Engineering, 2013, 49(10): 62-69 (in Chinese). [12] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究[J]. 物理学报, 2013, 62(13): 134302. ZHANG S W, WU J H. Low-frequency band gaps in phononic crystals with composite locally resonant structures[J]. Acta Physica Sinica, 2013, 62(13): 134302 (in Chinese). [13] 刘金辉, 李金强, 张 垚, 等. 双层薄膜型超材料夹层板的多带隙设计[J]. 动力学与控制学报, 2023, 21(7): 20-27. LIU J H, LI J Q, ZHANG Y, et al. Multi-bandgap design of double membrane-type acoustic metamaterials[J]. Journal of Dynamics and Control, 2023, 21(7): 20-27 (in Chinese). [14] 肖伟民, 李禹昕, 户文成, 等. 双层超材料板的弯曲波超低频带隙特性研究[J]. 功能材料, 2023, 54(2): 2146-2152. XIAO W M, LI Y X, HU W C, et al. Ultralow frequency band gaps of flexural wave in metamaterial bipanel[J]. Journal of Functional Materials, 2023, 54(2): 2146-2152 (in Chinese). [15] 李东庭, 黄思博, 莫方朔, 等. 基于微穿孔板和卷曲背腔复合结构的低频宽带吸声体[J]. 科学通报, 2020, 65(15): 1420-1427. LI D T, HUANG S B, MO F S, et al. Low-frequency broadband absorbers based on coupling micro-perforated panel and space-curling chamber[J]. Chinese Science Bulletin, 2020, 65(15): 1420-1427 (in Chinese). [16] FOEHR A, BILAL O R, HUBER S D, et al. Spiral-based phononic plates: from wave beaming to topological insulators[J]. Physical Review Letters, 2018, 120(20): 205501. [17] TIAN X Y, CHEN W J, GAO R J, et al. Merging Bragg and local resonance bandgaps in perforated elastic metamaterials with embedded spiral holes[J]. Journal of Sound and Vibration, 2021, 500: 116036. [18] TIAN X Y, CHEN W J, GAO R J, et al. Design of pore layout for perforated auxetic metamaterials with low-frequency band gaps[J]. Applied Physics Express, 2020, 13(4): 045503. [19] 麻乘榕, 邵 晨, 万庆冕, 等. 用于汽车低频振动控制的局域共振声子晶体[J]. 应用声学, 2018, 37(1): 152-158. MA C R, SHAO C, WAN Q M, et al. A locally-resonant phononic crystal for low-frequency vibration control of vehicles[J]. Journal of Applied Acoustics, 2018, 37(1): 152-158 (in Chinese). [20] WU F, XIAO Y, YU D L, et al. Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels[J]. Applied Physics Letters, 2019, 114(15): 151901. |