[1] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554-557. [2] ZHOU Y M, ZHAO L D. Promising thermoelectric bulk materials with 2D structures[J]. Advanced Materials, 2017, 29(45): 1702676. [3] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461. [4] ZHAO L D, DRAVID V P, KANATZIDIS M G. The panoscopic approach to high performance thermoelectrics[J]. Energy & Environmental Science, 2014, 7(1): 251-268. [5] GUO Z, WU G, TAN X J, et al. Synergistic manipulation of interdependent thermoelectric parameters in SnTe-AgBiTe2 alloys by Mn doping[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29032-29038. [6] SARKAR D, DAS S, BISWAS K. Valence band convergence and nanostructured phonon scattering trigger high thermoelectric performance in SnTe[J]. Applied Physics Letters, 2021, 119(25): 253901. [7] BREBRICK R F, STRAUSS A J. Anomalous thermoelectric power as evidence for two-valence bands in SnTe[J]. Physical Review, 1963, 131(1): 104-110. [8] SANTHANAM S, CHAUDHURI A K. Transport properties of SnTe interpreted by means of a two valence band model[J]. Materials Research Bulletin, 1981, 16(8): 911-917. [9] ZHANG M Q, YANG D W, LUO H, et al. Super-structured defects modulation for synergistically optimizing thermoelectric property in SnTe-based materials[J]. Materials Today Physics, 2022, 23: 100645. [10] CHEN Z Y, SUN Q A, ZHANG F J, et al. Mechanical alloying boosted SnTe thermoelectrics[J]. Materials Today Physics, 2021, 17: 100340. [11] TAN G J, SHI F Y, HAO S Q, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe[J]. Journal of the American Chemical Society, 2015, 137(35): 11507-11516. [12] TAN G J, SHI F Y, DOAK J W, et al. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe[J]. Energy & Environmental Science, 2015, 8(1): 267-277. [13] LI J Q, HUANG S, CHEN Z P, et al. Phases and thermoelectric properties of SnTe with (Ge, Mn) co-doping[J]. Physical Chemistry Chemical Physics, 2017, 19(42): 28749-28755. [14] MUCHTAR A R, SRINIVASAN B, LE TONQUESSE S, et al. Thermoelectrics: physical insights on the lattice softening driven mid-temperature range thermoelectrics of Ti/Zr-inserted SnTe—an outlook beyond the horizons of conventional phonon scattering and excavation of heikes' equation for estimating carrier properties [J]. Advanced Energy Materials, 2021, 11(28): 2101122. [15] MISRA S, WIENDLOCHA B, TOBOLA J, et al. Band structure engineering in Sn1.03Te through an In-induced resonant level[J]. Journal of Materials Chemistry C, 2020, 8(3): 977-988. [16] PENG P P, WANG C, LI L W, et al. Enhanced thermoelectric performance of In-doped and AgCuTe-alloyed SnTe through band engineering and endotaxial nanostructures[J]. Physical Chemistry Chemical Physics, 2022, 24(44): 27105-27113. [17] YANG H J, DUAN B, ZHOU L, et al. Rapid fabrication and thermoelectric properties of Sn1.03Te-based materials with porous configuration[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(5): 2479-2489. [18] PANG H M, ZHANG X X, WANG D Y, et al. Realizing ranged performance in SnTe through integrating bands convergence and DOS distortion[J]. Journal of Materiomics, 2022, 8(1): 184-194. [19] DONG J F, SUN F H, TANG H C, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance[J]. Energy & Environmental Science, 2019, 12(4): 1396-1403. [20] TANG J, GAO B, LIN S Q, et al. Manipulation of band structure and interstitial defects for improving thermoelectric SnTe[J]. Advanced Functional Materials, 2018, 28(34): 1803586. [21] TANG J, GAO B, LIN S Q, et al. Manipulation of solubility and interstitial defects for improving thermoelectric SnTe alloys[J]. ACS Energy Letters, 2018, 3(8): 1969-1974. [22] BANIK A, GHOSH T, ARORA R, et al. Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe[J]. Energy & Environmental Science, 2019, 12(2): 589-595. [23] CHEN Z Y, GUO X M, TANG J, et al. Extraordinary role of Bi for improving thermoelectrics in low-solubility SnTe-CdTe alloys[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26093-26099. [24] TAN H A, GUO L J, WANG G W, et al. Synergistic effect of bismuth and indium codoping for high thermoelectric performance of melt spinning SnTe alloys[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23337-23345. [25] TAN G J, ZEIER W G, SHI F Y, et al. High thermoelectric performance SnTe-In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering[J]. Chemistry of Materials, 2015, 27(22): 7801-7811. [26] ZHANG Q, LIAO B L, LAN Y C, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13261-13266. [27] MA Z, WANG C, LEI J D, et al. Core-shell nanostructures introduce multiple potential barriers to enhance energy filtering for the improvement of the thermoelectric properties of SnTe[J]. Nanoscale, 2020, 12(3): 1904-1911. [28] ZHOU Z W, YANG J Y, JIANG Q H, et al. Thermoelectric performance of SnTe with ZnO carrier compensation, energy filtering, and multiscale phonon scattering[J]. Journal of the American Ceramic Society, 2017, 100(12): 5723-5730. [29] TAN G J, ZHAO L D, SHI F Y, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach[J]. Journal of the American Chemical Society, 2014, 136(19): 7006-7017. [30] ZHANG F J, ZHAO X W, LI R H, et al. Enhanced thermoelectric performance in high-defect SnTe alloys: a significant role of carrier scattering[J]. Journal of Materials Chemistry A, 2022, 10(44): 23521-23530. [31] ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(38): 20741-20748. [32] BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties[J]. Chemistry of Materials, 2015, 27(2): 581-587. [33] TAN X J, SHAO H Z, HE J, et al. Band engineering and improved thermoelectric performance in M-doped SnTe (M=Mg, Mn, Cd, and Hg)[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(10): 7141-7147. [34] TAN X F, LIU G Q, XU J T, et al. Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering[J]. Journal of Materiomics, 2018, 4(1): 62-67. [35] CHEN Z Y, TANG J, GUO X M, et al. Improving near-room-temperature thermoelectrics in SnTe-MnTe alloys[J]. Applied Physics Letters, 2020, 116(19): 193902. [36] AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys[J]. Chemistry of Materials, 2016, 28(1): 376-384. [37] WU D, CHEN X A, ZHENG F S, et al. Dislocation evolution and migration at grain boundaries in thermoelectric SnTe[J]. ACS Applied Energy Materials, 2019, 2(4): 2392-2397. [38] TAN G J, HAO S Q, HANUS R C, et al. High thermoelectric performance in SnTe-AgSbTe2 alloys from lattice softening, giant phonon-vacancy scattering, and valence band convergence[J]. ACS Energy Letters, 2018, 3(3): 705-712. [39] ACHARYA S, PANDEY J, SONI A. Soft phonon modes driven reduced thermal conductivity in self-compensated Sn1.03Te with Mn doping[J]. Applied Physics Letters, 2016, 109(13): 133904. [40] HANUS R, AGNE M, RETTIE A, et al. Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency[J]. Advanced Materials, 2019, 31(21): 1900108. [41] ZHOU Z W, YANG J Y, JIANG Q H, et al. Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe[J]. Journal of Materials Chemistry A, 2016, 4(34): 13171-13175. [42] LEE Y, LO S H, CHEN C Q, et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide[J]. Nature Communications, 2014, 5: 3640. [43] HAN M K, HOANG K, KONG H J, et al. Substitution of Bi for Sb and its role in the thermoelectric properties and nanostructuring in Ag1-xPb18MTe20 (M=Bi, Sb) (x=0, 0.14, 0.3)[J]. Chemistry of Materials, 2008, 20(10): 3512-3520. [44] TAN G J, SHI F Y, SUN H, et al. SnTe-AgBiTe2 as an efficient thermoelectric material with low thermal conductivity[J]. Journal of Materials Chemistry A, 2014, 2(48): 20849-20854. [45] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. [46] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. [47] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [48] TIAN B Z, CHEN J E, JIANG X P, et al. Enhanced thermoelectric performance of SnTe-based materials via interface engineering[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50057-50064. [49] LI W H, GAO L, WEI S T, et al. Improved thermoelectric performance by microwave wet chemical synthesis of low thermal conductivity SnTe[J]. Physica B: Condensed Matter, 2023, 660: 414894. |