[1] BARSOUM M, EL-RAGHY T. The MAX phases: unique new carbide and nitride materials[J]. American Scientist, 2001, 89(4): 334. [2] CHING W Y, MO Y X, ARYAL S, et al. Intrinsic mechanical properties of 20 MAX-phase compounds[J]. Journal of the American Ceramic Society, 2013, 96(7): 2292-2297. [3] KEAST V J, HARRIS S, SMITH D K. Prediction of the stability of the Mn+1AXn phases from first principles[J]. Physical Review B, 2009, 80(21): 214113. [4] ARYAL S, SAKIDJA R, OUYANG L Z, et al. Elastic and electronic properties of Ti2Al(CxN1-x) solid solutions[J]. Journal of the European Ceramic Society, 2015, 35(12): 3219-3227. [5] NOWOTNY V H. Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Progress in Solid State Chemistry, 1971, 5: 27-70. [6] ATAZADEH N, SAEEDI HEYDARI M, BAHARVANDI H R, et al. Reviewing the effects of different additives on the synthesis of the Ti3SiC2 MAX phase by mechanical alloying technique[J]. International Journal of Refractory Metals and Hard Materials, 2016, 61: 67-78. [7] LI X Q, MALZBENDER J, YAN G, et al. A combined experimental and modeling study revealing the anisotropic mechanical response of Ti2AlN MAX phase[J]. Journal of the European Ceramic Society, 2021, 41: 5872-5881. [8] KUMAR R S, REKHI S, CORNELIUS A L, et al. Compressibility of Nb2AsC to 41 GPa[J]. Applied Physics Letters, 2005, 86(11): 672. [9] ZHAO Y H, DENG S J, LIU H, et al. First-principle investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2 (A=Al and Si)[J]. Computational Materials Science, 2018, 154: 365-370. [10] MUSIC D, EMMERLICH J, SCHNEIDER J M. Phase stability and elastic properties of Tan+1AlCn(n=1-3) at high pressure and elevated temperature[J]. Journal of Physics: Condensed Matter, 2007, 19(13): 136207. [11] PENG M J, WANG R F, WU Y J, et al. Elastic anisotropies, thermal conductivities and tensile properties of MAX phases Zr2AlC and Zr2AlN: a first-principles calculation[J]. Vacuum, 2022, 196: 110715. [12] LI N, MO Y X, CHING W Y. The bonding, charge distribution, spin ordering, optical, and elastic properties of four MAX phases Cr2AX (A=Al or Ge, X=C or N): from density functional theory study[J]. Journal of Applied Physics, 2013, 114: 183503. [13] LU Y P, YANG A C, DUAN Y H, et al. Structural stability, electronic and optical properties of MAX-phase ternary nitrides β-TM4AlN3 (TM=V, Nb, and Ta) using the first-principles explorations[J]. Vacuum, 2021, 193: 110529. [14] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 2005, 220(5/6): 567-570. [15] PERDEW J P, BURKE K, ERNZERHOF M. Perdew, burke, and ernzerhof reply[J]. Physical Review Letters, 1998, 80(4): 891. [16] SETYAWAN W, CURTAROLO S. High-throughput electronic band structure calculations: challenges and tools[J]. Computational Materials Science, 2010, 49(2): 299-312. [17] 彭军辉. 三元层状陶瓷M-Al-N(M=Ti, Zr, Hf)的结构及力学性质的第一性原理模拟[J]. 计算物理, 2020, 37(5): 603-611. PENG J H. First-principles simulation of structure and mechanical properties of ternary layered ceramics M-Al-N(M=Ti, Zr, Hf)[J]. Chinese Journal of Computational Physics, 2020, 37(5): 603-611 (in Chinese). [18] SHEIN I R, IVANOVSKII A L. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn(n=1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability[J]. Computational Materials Science, 2012, 65: 104-114. [19] COVER M F, WARSCHKOW O, BILEK M M M, et al. A comprehensive survey of M2AX phase elastic properties[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2009, 21(30): 305403. [20] YAKOUBI A, BELDI L, BOUHAFS B, et al. Full-relativistic calculation of electronic structure of Zr2AlC and Zr2AlN[J]. Solid State Communications, 2006, 139(9): 485-489. [21] FAST L, WILLS J M, JOHANSSON B, et al. Elastic constants of hexagonal transition metals: theory[J]. Physical Review B, 1995, 51(24): 17431-17438. [22] SIN'KO G V, SMIRNOV N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. Journal of Physics: Condensed Matter, 2002, 14(29): 6989-7005. [23] HART D J, WANG H F. A single test method for determination of poroelastic constants and flow parameters in rocks with low hydraulic conductivities[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(4): 577-583. [24] MEHL M J, OSBURN J E, PAPACONSTANTOPOULOS D A, et al. Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations[J]. Physical Review B, 1990, 41(15): 10311-10323. [25] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究[J]. 物理学报, 2019, 68(7): 238-252. LÜ C W, WANG C J, GU J B. First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure[J]. Acta Physica Sinica, 2019, 68(7): 238-252 (in Chinese). [26] BOUHEMADOU A, KHENATA R, CHEGAAR M. Structural and elastic properties of Zr2AlX and Ti2AlX (X=C and N) under pressure effect[J]. The European Physical Journal B, 2007, 56(3): 209-215. [27] SUN Z M, LI S, AHUJA R, et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta)[J]. Solid State Communications, 2004, 129(9): 589-592. [28] DOBSON P J. Physical properties of crystals-their representation by tensors and matrices[J]. Physics Bulletin, 1985, 36(12): 506. [29] DU J F, ZHU J, HU M G, et al. Experimental simulation of fractional statistics of abelian anyons in the Kitaev lattice-spin model[EB/OL]. 2017: arXiV:0712.2694v1. https://arxiv.org/pdf/0712.2694.pdf. [30] WANG F, LV X M, XIE W P, et al. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017, 39: 257-266. [31] AZZOUZ L, HALIT M, SIDOUMOU M, et al. Electronic structure, elastic and optical properties of AEuS2 (A=Na, K, Rb, and Cs) ternary sulfides: first-principles study[J]. physica status solidi (b), 2019: 1900136. [32] MORTAZAVI B, SHAHROKHI M, MAKAREMI M, et al. Anisotropic mechanical and optical response and negative Poissons ratio in Mo2C nanomembranes revealed by first-principles simulations[EB/OL]. 2017: arXiv: 1703.06786. https://arxiv.org/abs/1703.06786.pdf. [33] DELIN A, ERIKSSON O, AHUJA R, et al. Optical properties of the group-IVB refractory metal compounds[J]. PubMed, 1996. [34] DRESSEL M, GRUENER G. Electrodynamics of solids: optical properties of electrons in matter[J]. American Journal of Physics, 2002, 70(12): 1269-1270. [35] MIAO X J, XING W, MENG F Y, et al. Prediction on technetium triboride from first-principles calculations[J]. Solid State Communications, 2017, 252: 40-45. |