[1] WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors[J]. RSC Advances, 2015, 5(105): 86219-86236. [2] LIU Y, WANG Z X, MIAO K, et al. Research progress on near-infrared long persistent phosphor materials in biomedical applications[J]. Nanoscale Advances, 2022, 4(23): 4972-4996. [3] DEDYULIN S, AHMED Z, MACHIN G. Emerging technologies in the field of thermometry[J]. Measurement Science and Technology, 2022, 33(9): 092001. [4] WANG Q A, LIAO M, LIN Q M, et al. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials[J]. Journal of Alloys and Compounds, 2021, 850: 156744. [5] JAQUE D, VETRONE F. Luminescence nanothermometry[J]. Nanoscale, 2012, 4(15): 4301-4326. [6] LI X X, BAO B T, HE X Y, et al. Optical temperature sensing with an Er3+, Yb3+ co-doped LaBMoO6 single crystal[J]. Journal of Materials Chemistry C, 2023, 11(7): 2494-2504. [7] XU Z Q, CHEN L H, ZHANG L Q, et al. Yb/Er∶Cs2Ag(In/Bi)Cl6 lead-free double perovskite for dual-modal optical temperature sensing[J]. Journal of Luminescence, 2022, 248: 118996. [8] CUI H Q, CAO Y Z, ZHANG Y H, et al. Upconversion luminescence thermal enhancement and emission color modulation of LiYGeO4∶Er3+/Yb3+ phosphors[J]. Journal of Alloys and Compounds, 2022, 927: 167107. [9] WANG P F, LI K A, JIN Y C, et al. Spectral properties and high-efficiency broadband laser operation of Tm∶CaY0.9Gd0.1AlO4 crystal[J]. Optics & Laser Technology, 2023, 161: 109217. [10] ZHANG N, WANG H Y, YIN Y Q, et al. Cracking mechanism and spectral properties of Er, Yb∶CaGdAlO4 crystals grown by the LHPG method[J]. CrystEngComm, 2020, 22(5): 955-960. [11] LI X J, ZHANG Y, GENG D L, et al. CaGdAlO4∶Tb3+/Eu3+ as promising phosphors for full-color field emission displays[J]. Journal of Materials Chemistry C, 2014, 2(46): 9924-9933. [12] HU Q Q, JIA Z T, TANG C, et al. The origin of coloration of CaGdAlO4 crystals and its effect on their physical properties[J]. CrystEngComm, 2017, 19(3): 537-545. [13] PAN Z B, LOIKO P, SLIMI S, et al. Tm, Ho: Ca(Gd, Lu)AlO4 crystals: crystal growth, structure refinement and Judd-Ofelt analysis[J]. Journal of Luminescence, 2022, 246: 118828. [14] MARTA MOLTENI L, PIRZIO F, MANZONI C, et al. Few-optical-cycle pulse generation based on a non-linear fiber compressor pumped by a low-energy Yb: CALGO ultrafast laser[J]. Optics Express, 2020, 28(9): 13714. [15] PAN Z B, LOIKO P, SERRES J M, et al. “Mixed” Tm∶Ca(Gd, Lu)AlO4—a novel crystal for tunable and mode-locked 2 μm lasers[J]. Optics Express, 2019, 27(7): 9987. [16] DI J Q, XU X D, XIA C T, et al. Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals[J]. Journal of Luminescence, 2014, 155: 101-107. [17] ZHANG X Y, LIU Y X, ZHANG M, et al. Efficient deep ultraviolet to near infrared quantum cutting in Pr3+/Yb3+ codoped CaGdAlO4 phosphors[J]. Journal of Alloys and Compounds, 2018, 740: 595-602. [18] ZHANG Y, LIU X M, LI X J, et al. Overcoming crystallographically imposed geometrical restrictions on the valence state of Eu in CaGdAlO4: realization of white light emission from singly-doped Eu phosphors[J]. Dalton Transactions, 2015, 44(17): 7743-7747. [19] LI Y Q, YANG J A, WANG M W, et al. Tm3+/Yb3+ codoped CaGdAlO4 phosphors for wide-range optical temperature sensing[J]. Journal of Luminescence, 2022, 248: 118935. [20] PERRELLA R V, SCHIAVON M A, PECORARO E, et al. Broadened band C-telecom and intense upconversion emission of Er3+/Yb3+ co-doped CaYAlO4 luminescent material obtained by an easy route[J]. Journal of Luminescence, 2016, 178: 226-233. [21] LI X X, LI J T, XU X F, et al. Bi3+ assisted enhancement of photoluminescence and thermal sensing of Er3+/Yb3+ co-doped SrGdAlO4 phosphor with unusual stable color[J]. Ceramics International, 2021, 47(6): 8538-8544. [22] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. [23] YUN X Y, ZHOU J, ZHU Y H, et al. Green up-conversion luminescence and optical thermometry of Yb3+/Er3+ co-doped LiLuW2O8 phosphor[J]. Journal of Physics and Chemistry of Solids, 2022, 163: 110545. [24] ZHANG M L, ZHAI X S, LEI P P, et al. Selective enhancement of green upconversion luminescence from NaYF4∶Yb, Er microparticles through Ga3+ doping for sensitive temperature sensing[J]. Journal of Luminescence, 2019, 215: 116632. [25] HU J S, BIAN X M, WANG R N, et al. Single red upconversion luminescence in β-Ba2ScAlO5∶Yb3+/Er3+ phosphor assisted by Ce3+ ions[J]. Journal of Luminescence, 2022, 246: 118832. [26] LI M J, SU L B, CHEN X Y, et al. Effect of Yb3+ concentration on Er3+ doped CaF2 single crystal for temperature sensor applications[J]. Optics Communications, 2022, 520: 128488. [27] LI D Y, WANG Y X, ZHANG X R, et al. Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3[J]. Optics Communications, 2012, 285(7): 1925-1928. [28] LU H Y, YANG J S, HUANG D C, et al. Ultranarrow NIR bandwidth and temperature sensing of YOF∶Yb3+/Tm3+ phosphor in low temperature range[J]. Journal of Luminescence, 2019, 206: 613-617. [29] AVRAM D, TISEANU C. Thermometry properties of Er, Yb-Gd2O2S microparticles: dependence on the excitation mode (cw versus pulsed excitation) and excitation wavelength (980 nm versus 1500 nm)[J]. Methods and Applications in Fluorescence, 2018, 6(2): 025004. [30] ZHANG H J, DONG X B, JIANG L Y, et al. Comparative analysis of upconversion emission of LaF3∶Er/Yb and LaOF∶Er/Yb for temperature sensing[J]. Journal of Molecular Structure, 2020, 1206: 127665. [31] HU C L, LEI L, WANG Y B, et al. Improved thermally coupled levels based temperature sensing performance by engineering host phonon energy[J]. Journal of Luminescence, 2022, 252: 119357. [32] GAO W X, GE W Y, SHI J D, et al. A novel upconversion optical thermometers derived from non-thermal coupling levels of CaZnOS: Tm/Yb phosphors[J]. Journal of Solid State Chemistry, 2021, 297: 122063. [33] ERDEM M, CANTÜRK S B, ERYÜREK G. Upconversion Yb3+/Er3+∶La2Ti2O7 phosphors for solid-state lighting and optical thermometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 270: 120854. [34] NEXHA A, CARVAJAL J J, PUJOL M C, et al. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications[J]. Nanoscale, 2021, 13(17): 7913-7987. [35] ZI Y Z, YANG Z W, XU Z, et al. A novel upconversion luminescence temperature sensing material: negative thermal expansion Y2Mo3O12∶Yb3+, Er3+ and positive thermal expansion Y2Ti2O7∶Yb3+, Er3+ mixed phosphor[J]. Journal of Alloys and Compounds, 2021, 880: 160156. |