[1] MOUCHOVSKI J T, TEMELKOV K A, VUCHKOV N K, et al. Laser grade CaF2 with controllable properties: growing conditions and structural imperfection[J]. Journal of Physics D: Applied Physics, 2007, 40(24): 7682-7686. [2] RETHERFORD R S, SABIA R, SOKIRA V P. Effect of surface quality on transmission performance for (111) CaF2[J]. Applied Surface Science, 2001, 183(3/4): 264-269. [3] LI X, DOU X N, ZHU H, et al. Nanosecond laser-induced surface damage and its mechanism of CaF2 optical window at 248 nm KrF excimer laser[J]. Scientific Reports, 2020, 10: 5550. [4] NORMANI S, LOIKO P, BASYROVA L, et al. Mid-infrared emission properties of erbium-doped fluorite-type crystals[J]. Optical Materials Express, 2023, 13(7): 1836. [5] HAHN D. Calcium fluoride and Barium fluoride crystals in optics[J]. Optik & Photonik, 2014, 9(4): 45-48. [6] 刘 锋, 陈昆峰, 彭 超, 等. 大尺寸晶体快速生长理论与技术的研究进展[J]. 人工晶体学报, 2022, 51(9/10): 1732-1744. LIU F, CHEN K F, PENG C, et al. Advance in theory and technology of rapid growth of large-size crystals[J]. Journal of Synthetic Crystals, 2022, 51(9/10): 1732-1744 (in Chinese). [7] SRINIVASAN M, RAMASAMY P. Numerical study on various types of stress and dislocation generation in multi-crystalline silicon at various growth stages for PV applications[J]. Engineering with Computers, 2017, 33(2): 207-218. [8] SMIRNOVA O V, MAMEDOV V M, KALAEV V V. Numerical modeling of stress and dislocations in Si ingots grown by seed-directional solidification and comparison to experimental data[J]. Crystal Growth & Design, 2014, 14(11): 5532-5536. [9] KLAPPER H, RUDOLPH P. Defect generation and interaction during crystal growth[M]//Handbook of Crystal Growth. Amsterdam: Elsevier, 2015: 1093-1141. [10] 郭勇文, 黄晋强, 权纪亮. 大尺寸Nd, Ce:YAG激光晶体的生长及缺陷研究[J]. 人工晶体学报, 2021, 50(2): 244-247. GUO Y W, HUANG J Q, QUAN J L. Growth and defects of large size Nd, Ce:YAG laser crystal[J]. Journal of Synthetic Crystals, 2021, 50(2): 244-247 (in Chinese). [11] PETERSON J H, FIEDERLE M, DERBY J J. Analysis of the traveling heater method for the growth of cadmium telluride[J]. Journal of Crystal Growth, 2016, 454: 45-58. [12] HOLMES D E, GATOS H C. Convective interference and “effective” diffusion-controlled segregation during directional solidification under stabilizing vertical thermal gradients; Ge[J]. Journal of the Electrochemical Society, 1981, 128(2): 429-437. [13] TANG X, LIU B T, YU Y, et al. Numerical analysis of difficulties of growing large-size bulk β-Ga2O3 single crystals with the Czochralski method[J]. Crystals, 2020, 11(1): 25. [14] LYUBIMOVA T P, CROELL A, DOLD P, et al. Time-dependent magnetic field influence on GaAs crystal growth by vertical Bridgman method[J]. Journal of Crystal Growth, 2004, 266(1/2/3): 404-410. [15] HU K W, ZHENG L L, ZHANG H. Control of interface shape during high melting sesquioxide crystal growth by HEM technique[J]. Journal of Crystal Growth, 2018, 483: 175-182. [16] MOLCHANOV A, GRAEBNER O, WEHRHAN G, et al. Optimization of the growth of CaF2 crystals by model experiments and numerical simulation[J]. Journal of the Korean Crystal Growth and Crystal Technology, 2003, 13(1): 15-18. [17] XIONG H B, MA Y, ZHENG L L. A modified HEM system for optical crystal growth with high melting temperature[J]. Journal of Crystal Growth, 2007, 299(2): 404-412. [18] WANG P F, ZHANG Z H, WU Q H, et al. Numerical investigation of the VB growth of CaF2 crystal with supercooled crucible wall[J]. Journal of Crystal Growth, 2023, 617: 127232. [19] LI X H, JIANG D P, WANG J Y, et al. Numerical simulation of heat transfer and convection for CaF2 crystal growth by vertical Bridgman growth method[J]. Crystal Research and Technology, 2020, 55(3): 1900191. [20] MOLCHANOV A, HILBURGER U, FRIEDRICH J, et al. Experimental verification of the numerical model for a CaF2 crystal growth process[J]. Crystal Research and Technology, 2002, 37(1): 77-82. [21] EDWARDS K, DERBY J J. Understanding horizontal Bridgman shelf growth of cadmium telluride and cadmium zinc telluride. I. Heat and momentum transfer[J]. Journal of Crystal Growth, 1997, 179(1): 120-132. [22] DERBY J J, YECKEL A. Heat transfer analysis and design for bulk crystal growth: perspectives on the Bridgman method[M]//Handbook of Crystal Growth. Amsterdam: Elsevier, 2015: 793-843. [23] 闵乃本. 晶体生长的物理基础[M]. 第1版.上海: 上海科学技术出版社, 1982. MIN N B. Physical basis of crystal growth[M]. 1st ed. Shanghai: Shanghai Science and Technology Press, 1982 (in Chinese). [24] FANG H S, QIU S R, ZHENG L L, et al. Optimization of the cooling profile to achieve crack-free Yb:S-FAP crystals[J]. Journal of Crystal Growth, 2008, 310(16): 3825-3832. [25] BRICE J C. The cracking of Czochralski-grown crystals[J]. Journal of Crystal Growth, 1977, 42: 427-430. [26] STELIAN C, CHERIF M, CARROZ L, et al. Growth rate effect on colony formation in directional solidification of Al2O3/YAG/ZrO2[J]. Journal of the American Ceramic Society, 2019, 102(5): 2999-3008. [27] VOLZ M P, MAZURUK K, AGGARWAL M D, et al. Interface shape control using localized heating during Bridgman growth[J]. Journal of Crystal Growth, 2009, 311(8): 2321-2326. [28] ROY U N, WEILER S, STEIN J. Growth and interface study of 2in diameter CdZnTe by THM technique[J]. Journal of Crystal Growth, 2010, 312(19): 2840-2845. [29] SHI Y F, WANG P F, MU H H, et al. Advances of interface, flow, and stress control for VB crystal growth: an overview[J]. Progress in Crystal Growth and Characterization of Materials, 2023, 69(2/3/4): 100605. [30] STELIAN C, DUFFAR T, SANTAILLER J L, et al. Analysis of the factors affecting the interface deflection in the vertical Bridgman configuration[J]. Crystal Research and Technology, 2001, 36(7): 663. |