[1] 张良莹, 姚 熹. 电介质物理[M]. 西安: 西安交通大学出版社, 1991: 116. ZHANG L Y, YAO X. Dielectric physics[M]. Xi’an: Xi’an Jiaotong University Press, 1991: 116 (in Chinese). [2] VAN RYSSELBERGHE P. Remarks concerning the Clausius-Mossotti law[J]. The Journal of Physical Chemistry, 1932, 36(4): 1152-1155. [3] NEUGEBAUER H E J. Clausius-mosotti equation for certain types of anisotropic crystals[J]. Canadian Journal of Physics, 1954, 32(1): 1-8. [4] ROBINSON D A. Calculation of the dielectric properties of temperate and tropical soil minerals from ion polarizabilities using the clausius-mosotti equation[J]. Soil Science Society of America Journal, 2004, 68(5): 1780-1785. [5] HANNAY J H. The Clausius-Mossotti equation: an alternative derivation[J]. European Journal of Physics, 1983, 4(3): 141-143. [6] 夏建慧, 姚 熹, 丁士华, 等. NaCl晶体结构的εr计算[J]. 物理与工程, 2002, 12(5): 42-49. XIA J H, YAO X, DING S H, et al. Calculating dielectric constants of NaCl[J]. Physics and Engineering, 2002, 12(5): 42-49 (in Chinese). [7] 方俊鑫, 殷之文. 电介质物理学[M]. 北京: 科学出版社, 1989: 42. FANG J X, YIN Z W. Dielectric physics[M]. Beijing: Science Press, 1989: 42 (in Chinese). [8] SILVA G M, LIANG X D, KONTOGEORGIS G M. How to account for the concentration dependency of relative permittivity in the Debye-Hückel and Born equations[J]. Fluid Phase Equilibria, 2023, 566: 113671. [9] SKANAVI G I. Dielectric permittivity and its relation to temperature in crystals of the rutile and perovskite type[J]. Doklady Akademii Nauk sssr, 1948, 9: 76-81. [10] SKANAVI G I. The problem of calculating the internal field in polycrystalline dipole dielectrics in the case of relaxation polarization[J]. Soviet physics, 1948, 4: 28-32. [11] SKANAVI G I, KSENDZOV I M, TRIGUBENKO V A, et al. Relaxation polarization and losses in nonferroelectric dielectrics with high dielectric constants[J]. Soviet Journal of Experimental and Theoretical Physics, 1958, 6: 250. [12] SHANNON R D, PREWITT C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925-946. [13] PAULING L, WHELAND G W. The nature of the chemical bond. V[J]. The Journal of Chemical Physics, 1934, 2(8): 482. [14] PAULING L. Atomic radii and interatomic distances in metals[J]. Journal of the American Chemical Society, 1947, 69(3): 542-553. [15] PAULING L. The sizes of ions and the structure of ionic crystals[J]. Journal of the American Chemical Society, 1927, 49(3): 765-790. [16] SLATER J C. Atomic radii in crystals[J]. The Journal of Chemical Physics, 1964, 41(10): 3199-3204. [17] SINGH B P, SRIVASTAVA S K, DINESH K. Relation between thermal expansivity and bulk modulus for ionic solids at high temperatures[J]. Physica B: Condensed Matter, 2004, 349(1/2/3/4): 401-407. [18] BOSWELL F C. Precise determination of lattice constants by electron diffraction and variations in the lattice constants of very small crystallites[J]. Proceedings of the Physical Society Section A, 1951, 64(5): 465-476. [19] KAMIYOSHI K, FUJIMURA T. Method of measuring the dielectric constant of solid having arbitrary forms and its application to sodium chloride[J]. Science Reports of the Research Institutes, Tohoku University Ser A, Physics, Chemistry and Metallurgy, 1965, 17: 219-231. [20] 金维芳. 电介质物理学[M]. 2版. 北京: 机械工业出版社, 1997. JIN W F. Dielectric physics[M]. 2nd edition. Beijing: Machinery Industry Press, 1997 (in Chinese). [21] LI B, MICHAELIDES A, SCHEFFLER M. Density functional theory study of flat and stepped NaCl(001)[J]. Physical Review B, 2007, 76(7): 075401. |