[1] MA P, SALAMIN Y, BAEUERLE B, et al. Plasmonically enhanced graphene photodetector featuring 100 GBit/s data reception, high responsivity, and compact size[J]. ACS Photonics, 2019, 6(1): 154-161. [2] LI X M, RUI M C, SONG J Z, et al. Carbon and graphene quantum dots for optoelectronic and energy devices: a review[J]. Advanced Functional Materials, 2015, 25(31): 4929-4947. [3] PEVTSOV D N, DEMKIN D V, KATSABA A V, et al. Flame detectors based on semiconductor nanocrystals[J]. High Energy Chemistry, 2023, 57(4): 327-334. [4] CHEN K J, HÄBERLEN O, LIDOW A, et al. GaN-on-Si power technology: devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795. [5] KUMAZAKI Y, MATSUMOTO S, SATO T. Precise structural control of GaN porous nanostructures utilizing anisotropic electrochemical and chemical etching for the optical and photoelectrochemical applications[J]. Journal of the Electrochemical Society, 2017, 164(7): H477-H483. [6] AL-HEUSEEN K, HASHIM M R, ALI N K. Effect of different electrolytes on porous GaN using photo-electrochemical etching[J]. Applied Surface Science, 2011, 257(14): 6197-6201. [7] YAM F K, HASSAN Z, NG S S. Porous GaN prepared by UV assisted electrochemical etching[J]. Thin Solid Films, 2007, 515(7/8): 3469-3474. [8] SPELTA T, VEILLEROT M, MARTINEZ E, et al. Impact of etching process on Al2O3/GaN interface for MOSc-HEMT devices combining ToF-SIMS, HAXPES and AFM[J]. Solid-State Electronics, 2023, 208: 108743. [9] VAJPEYI A P, TRIPATHY S, SHANNIGRAHI S R, et al. Influence of rapid thermal annealing on the luminescence properties of nanoporous GaN films[J]. Electrochemical and Solid-State Letters, 2006, 9(4): G150. [10] HUANG W T, HONG L X, LIU R S. Nanostructure control of GaN by electrochemical etching for enhanced perovskite quantum dot LED backlighting[J]. ACS Applied Materials & Interfaces, 2023, 15(33): 39505-39512. [11] MINSKY M S, WHITE M, HU E L. Room-temperature photoenhanced wet etching of GaN[J]. Applied Physics Letters, 1996, 68(11): 1531-1533. [12] CHEN C H, CHANG S J, SU Y K, et al. Vertical high quality mirrorlike facet of GaN-based device by reactive ion etching[J]. Japanese Journal of Applied Physics, 2001, 40(4S): 2762. [13] 詹廷吾, 贾 伟, 董海亮, 等. 多孔GaN薄膜的制备与光学性能研究[J]. 人工晶体学报, 2023, 52(9): 1599-1608. ZHAN T W, JIA W, DONG H L, et al. Preparation and optical properties of porous GaN thin films[J]. Journal of Synthetic Crystals, 2023, 52(9): 1599-1608 (in Chinese). [14] LIU L, YANG C, PATANÈ A, et al. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN[J]. Nanoscale, 2017, 9(24): 8142-8148. [15] YU R X, WANG G D, SHAO Y L, et al. From bulk to porous GaN crystal: precise structural control and its application in ultraviolet photodetectors[J]. Journal of Materials Chemistry C, 2019, 7(45): 14116-14122. [16] RAMESH C, TYAGI P, BHATTACHARYYA B, et al. Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors[J]. Journal of Alloys and Compounds, 2019, 770: 572-581. [17] PU T F, YOUNIS U, CHIU H C, et al. Review of recent progress on vertical GaN-based PN diodes[J]. Nanoscale Research Letters, 2021, 16(1): 101. [18] NOMOTO K, SONG B, HU Z Y, et al. 1.7-kV and 0.55-mΩ·cm2 GaN p-n diodes on bulk gan substrates with avalanche capability[J]. IEEE Electron Device Letters, 2016, 37(2): 161-164. [19] PENG F, QIN S J, HU L F, et al. Electrochemical fabrication and optoelectronic properties of hybrid heterostructure of CuPc/porous GaN[J]. Chemical Physics Letters, 2016, 652: 6-10. [20] XIAO Y, LIU L, MA Z H, et al. High-performance self-powered ultraviolet photodetector based on nano-porous GaN and CoPc p-n vertical heterojunction[J]. Nanomaterials, 2019, 9(9): 1198. [21] XIAO Y, ZHANG W G, TAN Z T, et al. High switch ratio, self-powered ultraviolet photodetector based on a ZnOEP/GaN p-n heterojunction with porous structure on GaN[J]. Chemical Physics Letters, 2020, 739: 136981. [22] LI Q B, LIU G X, YU J X, et al. A perovskite/porous GaN crystal hybrid structure for ultrahigh sensitivity ultraviolet photodetectors[J]. Journal of Materials Chemistry C, 2022, 10(21): 8321-8328. [23] SARKAR K, KUMAR P. Activated hybrid g-C3N4/porous GaN heterojunction for tunable self-powered and broadband photodetection[J]. Applied Surface Science, 2021, 566: 150695. [24] ZHANG J Z, SHEN H L, XU Y J, et al. Excellent near-infrared response performance in p-CuS/n-Si heterojunction using a low-temperature solution method[J]. Surfaces and Interfaces, 2021, 26: 101430. [25] ADHIKARI S, SARKAR D, MADRAS G. Hierarchical design of CuS architectures for visible light photocatalysis of 4-chlorophenol[J]. ACS Omega, 2017, 2(7): 4009-4021. [26] KUDO A, SEKIZAWA M. Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution[J]. Catalysis Letters, 1999, 58: 241-243. [27] FANG X S, BANDO Y, LIAO M Y, et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors[J]. Advanced Materials, 2009, 21(20): 2034-2039. [28] ZHANG Y, SONG W D. High performance self-powered CuZnS/GaN UV photodetectors with ultrahigh on/off ratio (3×108)[J]. Journal of Materials Chemistry C, 2021, 9(14): 4799-4807. [29] 郭 越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器[J]. 物理学报, 2022, 71(21): 218501. GUO Y, SUN Y M, SONG W D. Narrowband near-ultraviolet photodetector fabricated from porous GaN/CuZnS heterojunction[J]. Acta Physica Sinica, 2022, 71(21): 218501 (in Chinese). [30] AL-HEUSEEN K, HASHIM M R, ALI N K. Enhanced optical properties of porous GaN by using UV-assisted electrochemical etching[J]. Physica B: Condensed Matter, 2010, 405(15): 3176-3179. [31] HARISH S, ARCHANA J, NAVANEETHAN M, et al. Synergetic effect of CuS@ZnS nanostructures on photocatalytic degradation of organic pollutant under visible light irradiation[J]. RSC Advances, 2017, 7(55): 34366-34375. [32] MALLICK A, CHATTOPADHYAY S, DE G, et al. High figure of merit p-type transparent conducting thin film based on solution processed CuS-ZnS nanocomposite[J]. Journal of Alloys and Compounds, 2019, 770: 813-822. [33] LIU B, MA Y R, ZHAO D Y, et al. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal[J]. Nano Research, 2017, 10(2): 618-625. [34] WANG L. Synthetic methods of CuS nanoparticles and their applications for imaging and cancer therapy[J]. RSC Advances, 2016, 6(86): 82596-82615. [35] XU X J, BULLOCK J, SCHELHAS L T, et al. Chemical bath deposition of p-type transparent, highly conducting (CuS)x: (ZnS)1-x nanocomposite thin films and fabrication of Si heterojunction solar cells[J]. Nano Letters, 2016, 16(3): 1925-1932. [36] 余海燕, 梁海欧, 白 杰, 等. 铜基硫化物光催化改性研究进展[J]. 人工晶体学报, 2023, 52(3): 394-404. YU H Y, LIANG H O, BAI J, et al. Research progress of photocatalytic modification of copper based sulfides[J]. Journal of Synthetic Crystals, 2023, 52(3): 394-404 (in Chinese). [37] ACHARYA S A, MAHESHWARI N, TATIKONDEWAR L, et al. Ethylenediamine-mediated wurtzite phase formation in ZnS[J]. Crystal Growth & Design, 2013, 13(4): 1369-1376. [38] HUANG Y Z, WU L M, DU S W, et al. Continuous band-gap reduction on ZnO submicrorods via covering with ZnS1-xSex or ZnSe1-xTex alloy in core/sheath morphology[J]. Inorganic Chemistry, 2009, 48(9): 3901-3903. [39] WU J C, ZHENG J W, ZACHERL C L, et al. Hybrid functionals study of band bowing, band edges and electronic structures of Cd1-xZnxS solid solution[J]. The Journal of Physical Chemistry C, 2011, 115(40): 19741-19748. [40] WANG P P, GAO Y H, LI P J, et al. Doping Zn2+ in CuS nanoflowers into chemically homogeneous Zn0.49Cu0.50S1.01 superlattice crystal structure as high-efficiency n-type photoelectric semiconductors[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15820-15827. [41] 许 强, 杨莉莉, 刘 增, 等. 银纳米颗粒复合非晶氧化镓光电探测器的制备与研究[J]. 光学学报, 2023, 43(20): 2004003-2004012. XU Q, YANG L L, LIU Z, et al. Preparation and study of Ag nanoparticles composite amorphous gallium oxide photodetector[J]. Acta Optica Sinica, 2023, 43(20): 2004003-2004012 (in Chinese). [42] ZHAO Z J, XU C Y, MA Y, et al. Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry-Pérot resonator architecture[J]. Advanced Functional Materials, 2022, 32(29): 2203606. |