[1] ŽUTIĆ I, FABIAN J, DAS SARMA S. Spintronics: fundamentals and applications[J]. Reviews of Modern Physics, 2004, 76(2): 323-410. [2] BHATTI S, SBIAA R, HIROHATA A, et al. Spintronics based random access memory: a review[J]. Materials Today, 2017, 20(9): 530-548. [3] TAIRA T, ISHIKAWA T, ITABASHI N, et al. Spin-dependent tunnelling characteristics of fully epitaxial magnetic tunnel junctions with a Heusler alloy Co2MnGe thin film and a MgO barrier[J]. Journal of Physics D: Applied Physics, 2009, 42(8): 084015. [4] FURUBAYASHI T, KODAMA K, SUKEGAWA H, et al. Current-perpendicular-to-plane giant magnetoresistance in spin-valve structures using epitaxial Co2FeAl0.5Si0.5/Ag/Co2FeAl0.5Si0.5 trilayers[J]. Applied Physics Letters, 2008, 93(12): 122507. [5] KATSNELSON M I, IRKHIN V Y, CHIONCEL L, et al. Half-metallic ferromagnets: from band structure to many-body effects[J]. Reviews of Modern Physics, 2008, 80(2): 315-378. [6] DE GROOT R A, MUELLER F M, VAN ENGEN P G, et al. New class of materials: half-metallic ferromagnets[J]. Physical Review Letters, 1983, 50(25): 2024-2027. [7] INOMATA K, OKAMURA S, GOTO R, et al. Large tunneling magnetoresistance at room temperature using a heusler alloy with the B2 structure[J]. Japanese Journal of Applied Physics, 2003, 42: L419-L422. [8] KUDRNOVSKÝ J, DRCHAL V, TUREK I, et al. Electronic, magnetic, and transport properties and magnetic phase transition in quaternary (Cu, Ni)MnSb Heusler alloys[J]. Physical Review B, 2008, 78(5): 054441. [9] WURMEHL S, FECHER G H, KANDPAL H C, et al. Investigation of Co2FeSi: the Heusler compound with highest Curie temperature and magnetic moment[J]. Applied Physics Letters, 2006, 88(3):032503. [10] UMETSU R Y, KOBAYASHI K, KAINUMA R, et al. Magnetic properties and band structures of half-metal-type Co2CrGa Heusler alloy[J]. Applied Physics Letters, 2004, 85(11): 2011-2013. [11] KELLOU A, FENINECHE N E, GROSDIDIER T, et al. Structural stability and magnetic properties in X2AlX’(X=Fe, Co, Ni; X’=Ti, Cr) Heusler alloys from quantum mechanical calculations[J]. Journal of Applied Physics, 2003, 94(5): 3292-3298. [12] PICOZZI S, CONTINENZA A, FREEMAN A. Co2MnX (X=Si, Ge, Sn) Heusler compounds: an ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure[J]. Physical Review B, 2002, 66: 094421. [13] JOURDAN M, MINÁR J, BRAUN J, et al. Direct observation of half-metallicity in the Heusler compound Co2MnSi[J]. Nature Communications, 2014, 5: 3974. [14] KHOSRAVIZADEH S, HASHEMIFAR S J, AKBARZADEH H. First-principles study of the Co2FeSi(001) surface and Co2FeSi/GaAs(001) interface[J]. Physical Review B, 2009, 79(23): 235203. [15] HUANG H M, LUO S J, YAO K L. First-principles study of half-metallic properties of the Heusler alloy Ti2CoGe[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(16): 2560-2564. [16] OUARDI S, FECHER G H, FELSER C, et al. Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl[J]. Physical Review Letters, 2013, 110(10): 100401. [17] GALANAKIS I, ÖZDOĞAN K, ŞAŞıOĞLU E, et al. Conditions for spin-gapless semiconducting behavior in Mn2CoAl inverse Heusler compound[J]. Journal of Applied Physics, 2014, 115(9): 093908. [18] JAMER M E, ASSAF B A, DEVAKUL T, et al. Magnetic and transport properties of Mn2CoAl oriented films[J]. Applied Physics Letters, 2013, 103(14): 142403. [19] LI J C, JIN Y J. Half-metallicity of the inverse Heusler alloy Mn2CoAl(001) surface: a first-principles study[J]. Applied Surface Science, 2013, 283: 876-880. [20] SKAFTOUROS S, ÖZDOGAN K, SASIOGLU E, et al. Search for spin gapless semiconductors: the case of inverse Heusler compounds[J]. Applied Physics Letters, 2013, 102(2): 022402. [21] PAUDEL R, ZHOU F, LIAO M Q, et al. Half-metallicity and magnetism of CoFeHfGe novel quaternary Heusler alloy in bulk form as well as (100) and (001) surfaces: an ab initio study[J]. Journal of Physics and Chemistry of Solids, 2020, 136: 109190. [22] HUSSAIN M K, GAO G Y, YAO K L. Investigations of the electronic and magnetic structures at Heusler alloy surface: Co2TiGe (001)[J]. Journal of Electron Spectroscopy and Related Phenomena, 2015, 203: 45-50. [23] KHALAF AL-ZYADI J, KADHIM A A, YAO K L. Half-metallicity of the (001), (111) and (110) surfaces of CoRuMnSi and interface half-metallicity of CoRuMnSi/CdS[J]. RSC Advances, 2018, 8(45): 25653-25663. [24] FENG Y, CHEN X R, ZHOU T, et al. Structural stability, half-metallicity and magnetism of the CoFeMnSi/GaAs(001) interface[J]. Applied Surface Science, 2015, 346: 1-10. [25] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [26] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [27] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [28] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [29] ALLEGRETTI F, O’BRIEN S, POLCIK M, et al. Adsorption bond length for H2O on TiO2(110): a key parameter for theoretical understanding[J]. Physical Review Letters, 2005, 95(22): 226104. |