[1] NAIR G B, SWART H C, DHOBLE S J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization[J]. Progress in Materials Science, 2020, 109: 100622. [2] 李 纳, 刘 斌, 施佼佼, 等. 可见光波段稀土激光晶体的研究进展[J]. 无机材料学报, 2019, 34(6): 573-589. LI N, LIU B, SHI J J, et al. Research progress of rare-earth doped laser crystals in visible region[J]. Journal of Inorganic Materials, 2019, 34(6): 573-589 (in Chinese). [3] CRAWFORD S E, OHODNICKI P R, BALTRUS J P. Materials for the photoluminescent sensing of rare earth elements: challenges and opportunities[J]. Journal of Materials Chemistry C, 2020, 8(24): 7975-8006. [4] 欧奕意, 王笑军, 梁宏斌. K3La(PO4)2基质中Tb3+的发光和能量传递[J]. 发光学报, 2022, 43(9): 1350-1360. OU Y Y, WANG X J, LIANG H B. Luminescence and energy transfer of Tb3+ in K3La(PO4)2[J]. Chinese Journal of Luminescence, 2022, 43(9): 1350-1360 (in Chinese). [5] 孙晓园, 范小暄, 何俊杰, 等. CaLuBO4∶Tb3+荧光粉的制备及发光性质[J]. 发光学报, 2020, 41(3): 265-270. SUN X Y, FAN X X, HE J J, et al. Preparation and photoluminescence properties of CaLuBO4∶Tb3+ phosphor[J]. Chinese Journal of Luminescence, 2020, 41(3): 265-270 (in Chinese). [6] ZHAO M X, ZHAO Z J, YANG L Q, et al. The generation of energy transfer from Ce3+ to Eu3+ in LaPO4∶Ce3+/Tb3+/Eu3+ phosphors[J]. Journal of Luminescence, 2018, 194: 297-302. [7] 孟晓燕, 廖 云, 张丽蓉, 等. GdPO4∶Tb3+荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2024, 53(1): 107-114. MENG X Y, LIAO Y, ZHANG L R, et al. Preparation and luminescent properties of GdPO4∶Tb3+ phosphors[J]. Journal of Synthetic Crystals, 2024, 53(1): 107-114 (in Chinese). [8] ZHANG H, CHEN T H, QIN S, et al. Fabrication of REVO4 films via sacrificial conversion from layered rare-earth hydroxide (LRH) films: the investigation of the transition mechanism and their photoluminescence[J]. Dalton Transactions, 2022, 51(14): 5577-5586. [9] ZHANG Y Y, MAO J, ZHU P F, et al. Tunable multicolor luminescence in vanadates from yttrium to indium with enhanced luminous efficiency and stability for its application in WLEDs and indoor photovoltaics[J]. Nano Research, 2023, 16(8): 11486-11494. [10] YANG L S, PENG S Y, ZHAO M L, et al. New synthetic strategies for luminescent YVO4∶Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) with mesoporous cell-like nanostructure[J]. Optical Materials Express, 2018, 8(12): 3805. [11] CHEN T T, LI K, MAO H B, et al. Preparation and upconversion emission investigation of the YVO4∶Yb3+/Tb3+/Eu3+ nanomaterials and their coupling with the Au nanoparticles[J]. Crystal Research and Technology, 2020, 55(8): 2000001. [12] PERRELLA R V, WALKER M, CHAMBERLAIN T W, et al. The influence of defects on the luminescence of trivalent terbium in nanocrystalline yttrium orthovanadate[J]. Nano Letters, 2022, 22(9): 3569-3575. [13] YAHIAOUI Z, HASSAIRI M A, DAMMAK M, et al. Tunable luminescence and near white-light emission of YPO4∶Eu3+, Tb3+, Tm3+ phosphors[J]. Journal of Alloys and Compounds, 2018, 763: 56-61. [14] YU Y, YU L X, PENG K L, et al. Hydrothermal synthesis and tunable luminescence of YPO4∶Eu2+/Eu3+, Tb3+ nanocrystals[J]. Ceramics International, 2023, 49(17): 29317-29326. [15] ZHANG Z X, ZHANG Y P, FENG Z G, et al. Luminescent properties of Ce3+/Tb3+co-doped glass ceramics containing YPO4 nanocrystals for W-LEDs[J]. Journal of Rare Earths, 2016, 34(5): 464-469. [16] FENG Y Q, ZHU M, KONG H L, et al. Effect of PO3-4/VO3-4 proportion on structure and photoluminescence properties of Gd(P V1-x)O4∶X at.% Tm3+ phosphors[J]. Journal of Luminescence, 2020, 217: 116796. [17] 王友发, 吴周礼, 李文润, 等. 掺铈YVO4晶体的发光特性及铈离子的价态分析[J]. 物理学报, 2012, 61(22): 228105. WANG Y F, WU Z L, LI W R, et al. Spectroscopic properties of cerium doped YVO4 crystals and analysis on valence state of cerium ion[J]. Acta Physica Sinica, 2012, 61(22): 228105 (in Chinese). [18] 吴周礼, 阮永丰, 王友发, 等. Ce∶YVO4晶体的生长及其电荷迁移发光[J]. 人工晶体学报, 2012, 41(1): 6-10. WU Z L, RUAN Y F, WANG Y F, et al. Growth and charge transfer luminescence of cerium-doped YVO4 crystals[J]. Journal of Synthetic Crystals, 2012, 41(1): 6-10 (in Chinese). [19] FENG K, LV B, CHENG H M, et al. Synthesis of ultrafine TbO1.81 and Tb2O3 powders for magneto-optical application[J]. Journal of Synthetic Crystals, 2021, 50(1): 80-87. [20] YANG Z W, HUANG X G, SUN L, et al. Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals[J]. Journal of Applied Physics, 2009, 105(8): 083523(1)-(8). [21] FENG Z Y, LOU B B, YIN M, et al. First-principles study of Bi3+-related luminescence and electron and hole traps in (Y/Lu/La)PO4[J]. Inorganic Chemistry, 2021, 60(7): 4434-4446. [22] RAJENDRA H J, PANDURANGAPPA C, MONIKA D L. Luminescence properties of dysprosium doped YVO4 phosphor[J]. Journal of Rare Earths, 2018, 36(12): 1245-1249. [23] MISHRA N K, SHWETABH K, GAUTAM U K, et al. Probing multimodal light emission from Tb3+/Yb3+-doped garnet nanophosphors for lighting applications[J]. Physical Chemistry Chemical Physics: PCCP, 2023, 25(16): 11756-11770. [24] GIAROLA M, SANSON A, RAHMAN A, et al. Vibrational dynamics of YPO4 and ScPO4 single crystals: an integrated study by polarized Raman spectroscopy and first-principles calculations[J].Physical Review, 2011, 83(22): 224302. [25] VORON’KO Y K, SOBOL’ A A, SHUKSHIN V E, et al. Raman spectroscopic study of structural disordering in YVO4, GdVO4, and CaWO4 crystals[J]. Physics of the Solid State, 2009, 51(9): 1886-1893. [26] YAHIAOUI Z, HASSAIRI M A, DAMMAK M. Synthesis and optical spectroscopy of YPO4∶Eu3+ orange-red phosphors[J]. Journal of Electronic Materials, 2017, 46(8): 4765-4773. [27] FUERTES V, CAMPO A D, GRÉGOIRE N, et al. Unveiling structural insights into nanocrystal-doped optical fibers via confocal Raman microscopy[J]. ACS Applied Materials & Interfaces, 2023, 15(30): 36724-36737. [28] 杨广武, 杨瑞霞, 张守超, 等. Ce3+浓度对YVO4∶Ce3+晶体发光性能的影响[J]. 无机材料学报, 2016, 31(10): 1073-1080. YANG G W, YANG R X, ZHANG S C, et al. Ce doping concentration on luminescence property of YVO4∶Ce3+ crystals[J]. Journal of Inorganic Materials, 2016, 31(10): 1073-1080 (in Chinese). [29] SUMALATHA C, DODDOJI R, VENKATESWARLU M, et al. Luminescence and photometric activity of an intense green emitting ZnBiBaBFTe∶Tb3+ glasses[J]. Radiation Physics and Chemistry, 2023, 208: 110894. [30] XIE L, QU X F, PENG B. Tb3+ ion luminescence monitors β-dicalcium silicate mineralization conversion[J]. Physica B: Condensed Matter, 2023, 665: 415019. [31] DRABIK J, MARCINIAK L. KLaP4O12∶Tb3+ nanocrystals for luminescent thermometry in a single-band-ratiometric approach[J]. ACS Applied Nano Materials, 2020, 3(4): 3798-3806. [32] 续 卓, 郭竞渊, 熊正烨, 等. 掺Tm3+和Tb3+的LiMgPO4磷光体的发光光谱与能量转移[J]. 物理学报, 2021, 70(16): 167801. XU Z, GUO J Y, XIONG Z Y, et al. Luminescence spectra and energy transfer of Tm3+ and Tb3+ doped in LiMgPO4 phosphors[J]. Acta Physica Sinica, 2021, 70(16): 167801 (in Chinese). |