[1] 赵祖康, 徐石明. 变电站自动化技术综述[J]. 电力自动化设备, 2000, 20(1): 38-42. ZHAO Z K, XU S M. A summary of substation automation technology[J]. Electric Power Automation Equipment, 2000, 20(1): 38-42 (in Chinese). [2] PASCULESCU D, FITA D N, POPESCU F G, et al. Risks assessment in terms of electrical safety for power substation from national power grid[J]. Research Developments in Science and Technology, 2022, 4: 1-28. [3] SPIEWAK R M, PIENIAZEK D, PITTMAN J, et al. Improving substation reliability and availability[C]. IEEE, 2009:1-17. [4] WANG Q S, SHANG Z J, CUI S J, et al. Research and application of wireless temperature monitoring for transformer substation[C]//2013 25th Chinese Control and Decision Conference (CCDC). Guiyang, China. IEEE, 2013: 4010-4015. [5] ATUL S T, LENIN BABU M C. Electro-thermo-mechanical FE simulations of OFHC Cu material for electric contact with DC/AC currents[C]//2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Jaipur, India. IEEE, 2016: 2131-2137. [6] 钱祥忠, 王学雷. 用于高压电器温度监测的FBG传感系统[J]. 电力系统及其自动化学报, 2007, 19(5): 49-51. QIAN X Z, WANG X L. FBG based sensing system for temperature monitoring of the high voltage apparatus[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Automation, 2007, 19(5): 49-51 (in Chinese). [7] ROGALSKI A. Infrared detectors: status and trends[J]. Progress in Quantum Electronics, 2003, 27(2): 59-210. [8] 孙泽理. 红外检测技术在变电站电气设备故障诊断中的应用研究[J]. 电子技术与软件工程, 2015(22): 250. SUN Z L. Application of infrared detection technology in fault diagnosis of substation electrical equipment[J]. Electronic Technology & Software Engineering, 2015(22): 250 (in Chinese). [9] 黄建华, 全零三. 变电站高压电气设备状态检修的现状及其发展[J]. 电力系统自动化, 2001, 25(16): 56-61. HUANG J H, QUAN L S. Current status and development of condition-based maintenance of high voltage electric power equipment in substation[J]. Automation of Electric Power Systems, 2001, 25(16): 56-61 (in Chinese). [10] WANG Q, LIAO M, LIN Q M, et al. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials[J]. Journal of Alloys and Compounds, 2021, 850: 156744. [11] DRAMICANIN M D. Trends in luminescence thermometry[J]. Journal of Applied Physics, 2020, 128(4): 040902. [12] GHAROUEL S, MARCINIAK L, LUKOWIAK A, et al.Impact of grain size, Pr3+ concentration and host composition on non-contact temperature sensing abilities of polyphosphate nano- and microcrystals[J]. Journal of Rare Earths, 2019, 37(8): 812-818. [13] REN S, WU Y, WANG Q, et al. Investigation of temperature sensing based on luminescence intensity ratiometric and lifetime of Zn0.9Mn0.1Al2O4∶Cr3+ phosphors with various reducing time[J]. Journal of Luminescence, 2022, 251: 119264. [14] LI Y R, ZHONG L, JIANG S, et al. Luminescent ratiometric temperature sensing based on Pr3+ and Bi3+ co-doped CaNb2O6 phosphors[J]. Journal of Luminescence, 2024, 266: 120300. [15] HYPPÄNEN I, PERÄLÄ N, ARPPE R, et al. Environmental and excitation power effects on the ratiometric upconversion luminescence based temperature sensing using nanocrystalline NaYF4∶ Yb3+, Er3[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2017, 18(6): 692-701. [16] MEN F, CAO B, CONG Y, et al. Thermal-enhanced near-infrared upconversion luminescence of Er3+ for high-sensitive optical temperature sensing[J]. Journal of Luminescence, 2021, 236: 118153. [17] WILHELM S. Perspectives for upconverting nanoparticles[J]. ACS Nano, 2017, 11(11): 10644-10653. [18] LAI J P, ZHANG Y X, PASQUALE N, et al. An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching[J]. Angewandte Chemie, 2014, 53(52): 14419-14423. [19] 季亚楠, 徐 文. 稀土掺杂上转换纳米材料在近红外光电探测器中的应用[J]. 硅酸盐学报, 2022, 50(12): 3185-3198. JI Y N, XU W. Rare-earth element ions doped upconversion nanocrystals in near-infrared photodetectors applications[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3185-3198 (in Chinese). [20] 张 伟, 左 芳. 上转换发光材料在不同防伪领域的研究进展[J]. 精细化工, 2021, 38(12): 2450-2457. ZHANG W, ZUO F. Research progress of upconversion luminescent materials in different anti-counterfeiting fields[J]. Fine Chemicals, 2021, 38(12): 2450-2457 (in Chinese). [21] CHEN B, WANG F. Emerging frontiers of upconversion nanoparticles[J]. Trends in Chemistry, 2020, 2(5): 427-439. [22] LIN G, JIN D. Responsive sensors of upconversion nanoparticles[J]. ACS sensors, 2021, 6(12): 4272-4282. [23] SHAN X C, WANG F, WANG D J, et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles[J]. Nature Nanotechnology, 2021, 16(5): 531-537. [24] KARIMOV D N, DEMINA P A, KOSHELEV A V, et al. Upconversion nanoparticles: synthesis, photoluminescence properties, and applications[J]. Nanotechnologies in Russia, 2020, 15(11): 655-678. |