[1] 张克从, 王希敏. 非线性光学晶体材料科学[M]. 2版. 北京: 科学出版社, 2005. ZHANG K C, WANG X M. Nonlinear optical crystal materials science. 2nd ed. Beijing: Science Press, 2005 (in Chinese). [2] SHEN Y R. The principles of nonlinear optics[M]. New York: J Wiley, 1984. [3] CHEN C T, SASAKI T, LI R K, et al. Nonlinear Optical Borate Crystals[M]. Germany: Wiley, 2012. [4] TRAN T T, YU H W, RONDINELLI J M, et al. Deep ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 2016, 28(15): 5238-5258. [5] GAO L, HUANG J B, GUO S R, et al. Structure-property survey and computer-assisted screening of mid-infrared nonlinear optical chalcohalides[J]. Coordination Chemistry Reviews, 2020, 421: 213379. [6] HALASYAMANI P S, RONDINELLI J M. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals[J]. Nature Communications, 2018, 9: 2972. [7] KANG L, ZHOU M L, YAO J Y, et al. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis[J]. Journal of the American Chemical Society, 2015, 137(40): 13049-13059. [8] CHEN C T, WU B C, JIANG A D, et al. A new-type ultraviolet SHG crystal β-BaB2O4[J]. Science in China Series B, 1985, 28(3): 235-243. [9] CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 1989, 6(4): 616. [10] WU Y C, SASAKI T, NAKAI S D, et al. CsB3O5: a new nonlinear optical crystal[J]. Applied Physics Letters, 1993, 62(21): 2614-2615. [11] TU J M, KESZLER D A. CsLiB6O10: a noncentrosymmetric polyborate[J]. Materials Research Bulletin, 1995, 30(2): 209-215. [12] CHEN C T, XU Z Y, DENG D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 1996, 68(21): 2930-2932. [13] TELL B, KASPER H M. Optical and electrical properties of AgGaS2 and AgGaSe2[J]. Physical Review B, 1971, 4(12): 4455-4459. [14] BOYD G D, BUEHLER E, STORZ F G. Linear and nonlinear optical properties of ZnGeP2 and CdSe[J]. Applied Physics Letters, 1971, 18(7): 301-304. [15] 杨志华, 潘世烈. 新型非线性光学晶体设计及预测研究进展[J]. 人工晶体学报, 2019, 48(7): 1173-1189. YANG Z H, PAN S L. Recent research progress of design and prediction of new nonlinear optical crystals[J]. Journal of Synthetic Crystals, 2019, 48(7): 1173-1189 (in Chinese). [16] SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648. [17] CHEN H, WEI W B, LIN H, et al. Transition-metal-based chalcogenides: a rich source of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2021, 448: 214154. [18] MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202. [19] LIANG F, KANG L, LIN Z S, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures[J]. Coordination Chemistry Reviews, 2017, 333: 57-70. [20] DONG L F, ZHANG S Z, GONG P F, et al. Evaluation and prospect of mid-infrared nonlinear optical materials in f0 rare earth (RE=Sc, Y, La) chalcogenides[J]. Coordination Chemistry Reviews, 2024, 509: 215805. [21] HART G L W, MUELLER T, TOHER C, et al. Machine learning for alloys[J]. Nature Reviews Materials, 2021, 6: 730-755. [22] XIE J H, ZHOU Y S, FAIZAN M, et al. Designing semiconductor materials and devices in the post-Moore era by tackling computational challenges with data-driven strategies[J]. Nature Computational Science, 2024, 4: 322-333. [23] CURTAROLO S, HART G L W, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12: 191-201. [24] GAO C C, MIN X, FANG M H, et al. Innovative materials science via machine learning[J]. Advanced Functional Materials, 2022, 32(1): 2108044. [25] XU X, LIANG H P, HUANG Q S, et al. Computational screening of promising deep-ultraviolet light emitters[J]. Journal of the American Chemical Society, 2024, 146(18): 12864-12876. [26] HAN S R, YE L T, LI Y, et al. Theoretical understanding of nonlinear optical properties in solids: a perspective[J]. The Journal of Physical Chemistry Letters, 2024, 15(12): 3323-3335. [27] OGANOV A R, PICKARD C J, ZHU Q, et al. Structure prediction drives materials discovery[J]. Nature Reviews Materials, 2019, 4: 331-348. [28] OGANOV A R, LYAKHOV A O, VALLE M. How evolutionary crystal structure prediction works: and why[J]. Accounts of Chemical Research, 2011, 44(3): 227-237. [29] O'SHAUGHNESSY M, GLOVER J, HAFIZI R, et al. Porous isoreticular non-metal organic frameworks[J]. Nature, 2024, 630: 102-108. [30] HU Y J, HU X B, ZHANG L, et al. Machine-learning modeling for ultra-stable high-efficiency perovskite solar cells[J]. Advanced Energy Materials, 2022, 12(41): 2201463. [31] MOU T Y, PILLAI H S, WANG S W, et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning[J]. Nature Catalysis, 2023, 6: 122-136. [32] FAN T, OGANOV A R. Discovery of high performance thermoelectric chalcogenides through first-principles high-throughput screening[J]. Journal of Materials Chemistry C, 2021, 9(38): 13226-13235. [33] HE J G, XIA Y, LIN W W, et al. Accelerated discovery and design of ultralow lattice thermal conductivity materials using chemical bonding principles[J]. Advanced Functional Materials, 2022, 32(14): 2108532. [34] ZHANG M S, LIU B W, JIANG X M, et al. Nonlinear optical phosphide CuInSi2P4: the inaugural member of diamond-like family I-III-IV2-V4 inspired by ZnGeP2[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1107-1113. [35] KANG L, LIANG F, JIANG X X, et al. First-principles design and simulations promote the development of nonlinear optical crystals[J]. Accounts of Chemical Research, 2020, 53(1): 209-217. [36] WANG R, LIANG F, LIN Z S. Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances[J]. Scientific Reports, 2020, 10: 3486. [37] WU Q C, KANG L, LIN Z S. A machine learning study on high thermal conductivity assisted to discover chalcogenides with balanced infrared nonlinear optical performance[J]. Advanced Materials, 2024, 36(6): 2309675. [38] ZHANG B B, ZHANG X D, YU J, et al. First-principles high-throughput screening pipeline for nonlinear optical materials: application to borates[J]. Chemistry of Materials, 2020, 32(15): 6772-6779. [39] YU J, ZHANG B B, ZHANG X D, et al. Finding optimal mid-infrared nonlinear optical materials in germanates by first-principles high-throughput screening and experimental verification[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45023-45035. [40] DONG X H, HUANG H B, HUANG L, et al. Unearthing superior inorganic UV second-order nonlinear optical materials: a mineral-inspired method integrating first-principles high-throughput screening and crystal engineering[J]. Angewandte Chemie International Edition, 2024, 63(11): e202318976. [41] NACCARATO F, RICCI F, SUNTIVICH J, et al. Searching for materials with high refractive index and wide band gap: a first-principles high-throughput study[J]. Physical Review Materials, 2019, 3(4): 044602. [42] YIN Y H, WANG A, SUN Z X, et al. Machine learning regression model for predicting the band gap of multi-elements nonlinear optical crystals[J]. Computational Materials Science, 2024, 242: 113109. [43] ZHANG Z Y, LIU X, SHEN L, et al. Machine learning with multilevel descriptors for screening of inorganic nonlinear optical crystals[J]. The Journal of Physical Chemistry C, 2021, 125(45): 25175-25188. [44] YU Z X, XUE P J, XIE B B, et al. Multi-fidelity machine learning for predicting bandgaps of nonlinear optical crystals[J]. Physical Chemistry Chemical Physics, 2024, 26(22): 16378-16387. [45] LEI B H, YANG Z H, PAN S L. Enhancing optical anisotropy of crystals by optimizing bonding electron distribution in anionic groups[J]. Chemical Communications, 2017, 53(19): 2818-2821. [46] LEI B H, YANG Z H, YU H W, et al. Module-guided design scheme for deep-ultraviolet nonlinear optical materials[J]. Journal of the American Chemical Society, 2018, 140(34): 10726-10733. [47] LI S F, JIANG X M, FAN Y H, et al. New strategy for designing promising mid-infrared nonlinear optical materials: narrowing the band gap for large nonlinear optical efficiencies and reducing the thermal effect for a high laser-induced damage threshold[J]. Chemical Science, 2018, 9(26): 5700-5708. [48] 张 振, 樊仲维, 苏良碧. 高功率激光与“超热导”激光晶体[J]. 人工晶体学报, 2022, 51(9-10): 1560-1572. ZHANG Z, FAN Z, SU L. High-power laser and ultra-high thermal conductivity laser crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1560-1572 (in Chinese). [49] WEI L, FU Y B, LI J R, et al. Theoretical study on the intrinsic source of the large thermal conductivity of Li-based chalcogenide nonlinear optical crystals: from AgGaS2 to LiGaS2[J]. Crystal Growth & Design, 2020, 20(6): 4150-4156. [50] WEI L, LV X S, YANG Y G, et al. Theoretical investigation on the microscopic mechanism of lattice thermal conductivity of ZnXP2 (X=Si, Ge, and Sn)[J]. Inorganic Chemistry, 2019, 58(7): 4320-4327. [51] HOU D W, NISSIMAGOUDAR A S, BIAN Q, et al. Prediction and characterization of NaGaS2, a high thermal conductivity mid-infrared nonlinear optical material for high-power laser frequency conversion[J]. Inorganic Chemistry, 2019, 58(1): 93-98. [52] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids, 1973, 34(2): 321-335. [53] MORELLI D T, SLACK G A. High lattice thermal conductivity solids[M]. New York: Springer, 2006. [54] AVERSA C, SIPE J E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis[J]. Physical Review B, Condensed Matter, 1995, 52(20): 14636-14645. [55] WU M F, TIKHONOV E, TUDI A, et al. Target-driven design of deep-UV nonlinear optical materials via interpretable machine learning[J]. Advanced Materials, 2023, 35(23): 2300848. [56] BERGERHOFF G, HUNDT R, SIEVERS R, et al. The inorganic crystal structure data base[J]. Journal of Chemical Information and Computer Sciences, 1983, 23(2): 66-69. [57] GROOM C R, BRUNO I J, LIGHTFOOT M P, et al. The Cambridge structural database[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2016, 72(Pt 2): 171-179. [58] JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002. [59] LUNDBERG S, LEE S I. A unified approach to interpreting model predictions[EB/OL]. 2017: arXiv: 1705.07874. http://arxiv.org/abs/1705.07874 [60] CHU D D, HUANG Y, XIE C W, et al. Unbiased screening of novel infrared nonlinear optical materials with high thermal conductivity: long-neglected nitrides and popular chalcogenides[J]. Angewandte Chemie International Edition, 2023, 62(16): e202300581. [61] TONG T H, ZHANG W Y, YANG Z H, et al. Series of crystals with giant optical anisotropy: a targeted strategic research[J]. Angewandte Chemie International Edition, 2021, 60(3): 1332-1338. [62] ZHOU Y, GUO Z F, GU H G, et al. A solution-processable natural crystal with giant optical anisotropy for efficient manipulation of light polarization[J]. Nature Photonics, 2024, https://doi.org/10.1038/s41566-024-01461-8. [63] ZHANG J, WU C F, SHI H S, et al. An interlinked prediction-experiment paradigm discovering deep-ultraviolet fluorooxoborates with desired optical nonlinearity and birefringence[J]. Matter, 2023, 6(4): 1188-1202. [64] CAI W B, ABUDURUSULI A, XIE C W, et al. Toward the rational design of mid-infrared nonlinear optical materials with targeted properties via a multi-level data-driven approach[J]. Advanced Functional Materials, 2022, 32(23): 2200231. [65] CURTAROLO S, SETYAWAN W, HART G L W, et al. AFLOW: an automatic framework for high-throughput materials discovery[J]. Computational Materials Science, 2012, 58: 218-226. [66] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies[J]. NPJ Computational Materials, 2015, 1: 15010. [67] SCHEIDGEN M, HIMANEN L, LADINES A N, et al. NOMAD: a distributed web-based platform for managing materials science research data[J]. The Journal of Open Source Software, 2023, 8(90): 5388. [68] TALIRZ L, KUMBHAR S, PASSARO E, et al. Materials Cloud, a platform for open computational science[J]. Scientific Data, 2020, 7: 299. [69] LIU M, MENG S. Atomly.net materials database and its application in inorganic chemistry[J]. Scientia Sinica Chimica, 2023, 53(1): 19-25. [70] LIANG Y Z, CHEN M W, WANG Y N, et al. A universal model for accurately predicting the formation energy of inorganic compounds[J]. Science China Materials, 2023, 66(1): 343-351. [71] YU Z, BO T, LIU B, et al. Superconductive materials with MgB2-like structures from data-driven screening[J]. Physical Review B, 2022, 105(21): 214517. [72] XIE C W, TIKHONOV E, CHU D D, et al. A prediction-driven database to enable rapid discovery of nonlinear optical materials[J]. Science China Materials, 2023, 66(11): 4473-4479. [73] TUDI A, ZENG H, XIE C W, et al. Uncovering the structural diversity and excellent performance of a deep ultraviolet nonlinear optical system Li(B2O3)nF (n=1, 1.5, 2, and 3) by multicomponent prediction[J]. Chemistry of Materials, 2022, 34(7): 3133-3139. [74] TUDI A, XIE C W, PAN S L, et al. Design of novel deep-UV nonlinear optical materials with one-dimensional functional module[BO2]∞ chain and fluorine-driven short phase-matching[J]. Materials Today Physics, 2022, 28: 100852. [75] WANG P, CHU Y, TUDI A, et al. The combination of structure prediction and experiment for the exploration of alkali-earth metal-contained chalcopyrite-like IR nonlinear optical material[J]. Advanced Science, 2022, 9(15): e2106120. |