[1] ZHONG F Y, LI C Q, XIE Y B, et al. Titanium metal-organic framework nanorods for highly sensitive nitroaromatic explosives detection and nanomolar sensing of Fe3+[J]. Journal of Solid State Chemistry, 2019, 278: 120892.
[2] HE T, ZHANG Y Z, KONG X J, et al. Zr(IV)-based metal-organic framework with T-shaped ligand: unique structure, high stability, selective detection, and rapid adsorption of Cr2O2-7 in water[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16650-16659.
[3] XU T Y, LI J M, HAN Y H, et al. A new 3D four-fold interpenetrated dia-like luminescent Zn(II)-based metal-organic framework: the sensitive detection of Fe3+, Cr2O2-7, and CrO2-4 in water, and nitrobenzene in ethanol[J]. New Journal of Chemistry, 2020, 44(10): 4011-4022.
[4] LU B B, JIANG W, YANG J, et al. Resorcin[4]arene-based microporous metal-organic framework as an efficient catalyst for CO2 cycloaddition with epoxides and highly selective luminescent sensing of Cr2O2-7[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39441-39449.
[5] DUNN W B, BROADHURST D, BEGLEY P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry[J]. Nature Protocols, 2011, 6: 1060-1083.
[6] HOSKINS B F, ROBSON R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. Journal of the American Chemical Society, 1989, 111(15): 5962-5964.
[7] XIONG H L, GAO T N, LI K Q, et al. A polymer-oriented self-assembly strategy toward mesoporous metal oxides with ultrahigh surface areas[J]. Advanced Science, 2019, 6(6): 1801543.
[8] CHEN Y, HOANG T, MA S Q. Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework[J]. Inorganic Chemistry, 2012, 51(23): 12600-12602.
[9] SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals[J]. Chemistry, 2011, 17(24): 6643-6651.
[10] YIN Z, WAN S, YANG J, et al. Recent advances in post-synthetic modification of metal-organic frameworks: new types and tandem reactions[J]. Coordination Chemistry Reviews, 2019, 378: 500-512.
[11] ZHANG J P, ZHANG Y B, LIN J B, et al. Metal azolate frameworks: from crystal engineering to functional materials[J]. Chemical Reviews, 2012, 112(2): 1001-1033.
[12] MANSOORIANFAR M, NABIPOUR H, PAHLEVANI F, et al. Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials[J]. Environmental Research, 2022, 214: 114113.
[13] LV J, XIE Y B, XIE L H, et al. Fluorescence turn-on/off responses of In(III)-MOF to short-chain perfluorocarboxylic acids[J]. Transactions of Tianjin University, 2023, 29(3): 216-224.
[14] MIAO Z C, ZHOU Z H, TANG H L, et al. Homodimerization of 2H-chromenes catalyzed by Brønsted-acid derived UiO-66 MOFs[J]. Catalysis Science & Technology, 2018, 8(13): 3406-3413.
[15] ROWE M D, THAMM D H, KRAFT S L, et al. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer[J]. Biomacromolecules, 2009, 10(4): 983-993.
[16] CUI J W, HOU S X, LI Y H, et al. A multifunctional Ni(II) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst [J]. Dalton Transactions, 2017, 46(48): 16911-16924.
[17] WANG L, WU L D, SU X L, et al. A linear tetranuclear Ni(II) acyl hydrazone schiff base complex: preparation, crystal structure and catalytic application [J]. Transition Metal Chemistry, 2022, 47(7/8): 275-281.
[18] PAUL A, GUSMÃO F, MAHMOUD A G, et al. Catalyzing towards clean energy: tuning the oxygen evolution reaction by amide-functionalized Co(II) and Ni(II) pristine coordination polymers[J]. CrystEngComm, 2024, 26(21): 2755-2764.
[19] MARTSYNKO O, NESTERKINA M, FINIK O, et al. Synthesis and structure of a coordination polymer of Ni(II) with 2-(4-Bromophenoxy)acetohydrazide[J]. Molbank, 2024, 2024(2): M1819.
[20] FAN J, HANSON B E. Novel zinc phosphate topologies defined by organic ligands[J]. Inorganic Chemistry, 2005, 44(20): 6998-7008.
[21] QI Y, CHE Y X, ZHENG J M. Self-penetrating and interpenetrating 3D metal-organic frameworks constructed from the rigid 1, 4-bis(1-imidazolyl)-benzene ligand and aromatic carboxylate[J]. Crystal Growth & Design, 2008, 8(10): 3602-3608.
[22] FAN J, YEE G T, WANG G B, et al. Syntheses, structures, and magnetic properties of inorganic-organic hybrid cobalt(II) phosphites containing bifunctional ligands[J]. Inorganic Chemistry, 2006, 45(2): 599-608.
[23] YANG G S, LAN Y Q, ZANG H Y, et al. Two eight-connected self-penetrating porous metal-organic frameworks: configurational isomers caused by different linking modes between terephthalate and binuclear nickel building units[J]. CrystEngComm, 2009, 11(2): 274-277.
[24] XU H T, ZHENG N W, XU H H, et al. Synthesis and studies on single crystal structure of [Ni(3, 5-pdc)·H2O](3, 5-pdc=3, 5-pyridinedicarboxylic acid)[J]. Journal of Molecular Structure, 2002, 606(1/2/3): 117-122.
[25] GANG S Q, LIU Z Y, BIAN Y N, et al. A microporous Cd(II)-MOF for efficient separation of trace SO2 from SO2/CO2/N2 mixture[J]. Separation and Purification Technology, 2024, 335: 126153.
[26] CHANYSHEV A D, LITASOV K D, RASHCHENKO S V, et al. High-pressure-high-temperature study of benzene: refined crystal structure and new phase diagram up to 8 GPa and 923 K[J]. Crystal Growth & Design, 2018, 18(5): 3016-3026.
[27] PAL T K. Metal-organic framework (MOF)-based fluorescence “turn-on” sensors[J]. Materials Chemistry Frontiers, 2023, 7(3): 405-441.
[28] LIU L Z, YU M, LI X Y, et al. Syntheses, structures, Hirshfeld analyses and fluorescent properties of two Ni(Ⅱ) and Zn(Ⅱ) complexes constructed from a bis(salamo)-like ligand [J]. Chinese Journal of Inorganic Chemistry, 2019(7): 1283-1294.
[29] SU Q, ZHAO Q, AN X X, et al. Syntheses, crystal structures, Hirshfeld surface analyses, thermal and fluorescent properties of Cu(Ⅱ) and Ni(Ⅱ) Salamo-type complexes [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(3): 524-536.
[30] WANG Y N, WANG S D, CHANG X P, et al. A new fluorescence MOF for highly sensitive detection of acetylacetone[J]. ChemistrySelect, 2021, 6(5): 968-973.
[31] WU T T, GAO X J, GE F Y, et al. Metal-organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects[J]. CrystEngComm, 2022, 24(45): 7881-7901. |