[1] 汪礼丽. 石墨烯单晶铜衬底上外延生长及透明电磁屏蔽性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. WANG L L. Epitaxial growth and transparent electromagnetic shielding properties on graphene single crystal copper substrate[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [2] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. [3] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. [4] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [5] TROMP R M, HANNON J B. Thermodynamics and kinetics of graphene growth on SiC(0001)[J]. Physical Review Letters, 2009, 102(10): 106104. [6] LI X S, CAI W W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. [7] 陈克新, 苗鸿雁. 我国科学家把石墨烯单晶的生长速度提高了150倍[J]. 中国科学基金, 2017, 9: 30. CHEN K X, MIAO H Y, Chinese scientists have increased the growth rate of graphene single crystals by 150 times[J]. China Science Foundation, 2017, 9: 30. [8] HUANG M, BISWAL M, PARK H J, et al. Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil[J]. ACS Nano, 2018, 12(6): 6117-6127. [9] ZHANG X F, WU T R, JIANG Q, et al. Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750 ℃ via chemical vapor deposition[J]. Small, 2019, 15(22): 1805395. [10] HAO Y F, BHARATHI M S, WANG L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723. [11] 史永贵, 桑昭君, 王允威, 等. 气相捕获腔对石墨烯低压化学气相沉积形核生长的影响[J]. 人工晶体学报, 2020, 49(3): 439-445. SHI Y G, SANG Z J, WANG Y W, et al. Effect of the vapor trapping chamber on the nucleation and growth of graphene by low pressure chemical vapor deposition[J]. Journal of Synthetic Crystals, 2020, 49(3): 439-445 (in Chinese). [12] CHEN C C, KUO C J, LIAO C D, et al. Growth of large-area graphene single crystals in confined reaction space with diffusion-driven chemical vapor deposition[J]. Chemistry of Materials, 2015, 27(18): 6249-6258. [13] DAI C Y, WANG W C, TSENG C A, et al. Spatial confinement approach using Ni to modulate local carbon supply for the growth of uniform transfer-free graphene monolayers[J]. The Journal of Physical Chemistry C, 2020, 124(42): 23094-23105. [14] ZHANG Y N, HUANG D P, DUAN Y W, et al. Batch production of uniform graphene films via controlling gas-phase dynamics in confined space[J]. Nanotechnology, 2021, 32(10): 105603. [15] ZHANG Z H, XU X Z, QIU L, et al. The way towards ultrafast growth of single-crystal graphene on copper[J]. Advanced Science, 2017, 4(9): 1700087. [16] 袁良川. 不同氧调控措施对石墨烯形核及生长的影响[D]. 广州: 华南理工大学, 2021. YUAN L C. Effects of different oxygen control measures on nucleation and growth of graphene[D].Guangzhou: South China University of Technology, 2021 (in Chinese). [17] CAO Q J, SHI B Y, DOU W D, et al. Background pressure does matter for the growth of graphene single crystal on copper foil: key roles of oxygen partial pressure[J]. Carbon, 2018, 138: 458-464. [18] 王 璐, 高峻峰, 丁 峰. 经典晶体生长理论在石墨烯CVD成核和连续生长中的应用[J]. 化学学报, 2014, 72(3): 345-358. WANG L, GAO J F, DING F. Application of crystal growth theory in graphene CVD nucleation and growth[J]. Acta Chimica Sinica, 2014, 72(3): 345-358 (in Chinese). [19] RAO R, TISHLER D, KATOCH J, et al. Multiphonon Raman scattering in graphene[J]. Physical Review B, 2011, 84(11): 113406. [20] KROES J M H, AKHUKOV M A, LOS J H, et al. Mechanism and free-energy barrier of the type-57 reconstruction of the zigzag edge of graphene[J]. Physical Review B, 2011, 83(16): 165411. [21] BIRÓ L P, LAMBIN P. Nanopatterning of graphene with crystallographic orientation control[J]. Carbon, 2010, 48(10): 2677-2689. [22] CHEN H, ZHANG J C, LIU X T, et al. Effect of gas-phase reaction on the CVD growth of graphene[J]. Acta Physico Chimica Sinica, 2022, 38(1): 2101053. |