[1] SHAY J L, WAGNER S, KASPER H M. Efficient CuInSe2/CdS solar cells[J]. Applied Physics Letters, 1975, 27(2): 89-90. [2] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. [3] ZHANG X, HAN Y, CHAI S Z, et al. Advances in Cu2ZnSn(S,Se)4 thin film solar cells[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1330-1346. [4] RODRGUEZ-LAZCANO Y, NAIR M T S, NAIR P K. CuSbS2 thin film formed through annealing chemically deposited Sb2S3-CuS thin films[J]. Journal of Crystal Growth, 2001, 223(3): 399-406. [5] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. [6] ZHANG M Y, WANG C, CHEN C, et al. Recent progress in the research on using CuSbS2 and its derivative CuPbSbS3 as absorbers in case of photovoltaic devices[J]. Frontiers of Optoelectronics, 2021, 14(4): 450-458. [7] XIAO Z W, MENG W W, WANG J B, et al. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality[J]. Materials Horizons, 2017, 4(2): 206-216. [8] WALSH A, PAYNE D J, EGDELL R G, et al. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model[J]. Chemical Society Reviews, 2011, 40(9): 4455-4463. [9] LIU Y H, YANG B, ZHANG M Y, et al. Bournonite CuPbSbS3: an electronically-3D, defect-tolerant, and solution-processable semiconductor for efficient solar cells[J]. Nano Energy, 2020, 71: 104574. [10] DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. The Journal of Physical Chemistry Letters, 2014, 5(6): 1035-1039. [11] WALLACE S K, SVANE K, HUHN W P, et al. Candidate photoferroic absorber materials for thin-film solar cells from naturally occurring minerals: enargite, stephanite, and bournonite[J]. Sustainable Energy & Fuels, 2017, 1(6): 1339-1350. [12] YANG B, XUE D J, LENG M Y, et al. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S(1-x)Se(x))3 film: molecular precursor identification, film fabrication and band gap tuning[J]. Scientific Reports, 2015, 5: 10978. [13] MCLEOD S M, HAGES C J, CARTER N J, et al. Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks[J]. Progress in Photovoltaics: Research and Applications, 2015, 23(11): 1550-1556. [14] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465. [15] WEBBER D H, BRUTCHEY R L. Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture[J]. Journal of the American Chemical Society, 2013, 135(42): 15722-15725. [16] WANG G, ZHAO W G, CUI Y, et al. Fabrication of a Cu2ZnSn(S, Se)4 photovoltaic device by a low-toxicity ethanol solution process[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10042-10047. [17] WANG G, WANG S Y, CUI Y, et al. A novel and versatile strategy to prepare metal-organic molecular precursor solutions and its application in Cu(In, Ga)(S, Se)2 solar cells[J]. Chemistry of Materials, 2012, 24(20): 3993-3997. [18] LIU Y H, CHEN C, ZHOU Y, et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells[J]. Journal of Materials Chemistry C, 2019, 7(36): 11068-11084. [19] ZHANG M Y, LIU Y H, YANG B, et al. Efficiency improvement of bournonite CuPbSbS3 solar cells via crystallinity enhancement[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13273-13280. [20] ZHENG X L, WU D X, LIU Y H, et al. Photocatalytic reduction of water to hydrogen by CuPbSbS3 nanoflakes[J]. Materials Today Energy, 2022, 25: 100956. [21] YANG B, WANG L, HAN J, et al. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study[J]. Chemistry of Materials, 2014, 26(10): 3135-3143. [22] DHIMAN V, KUMAR S, KAUR M, et al. Synergistic effect of stirring and marigold shaped Cu2FeSnS4 nanostructure for the enhanced performance of Rhodamine B degradation under visible light[J]. Inorganic Chemistry Communications, 2023, 154: 110923. [23] YAN Y J, YU S, HONARFAR A, et al. Benefiting from spontaneously generated 2D/3D bulk-heterojunctions in ruddlesden-popper perovskite by incorporation of S-bearing spacer cation[J]. Advanced Science, 2019, 6(14): 1900548. [24] CLEVELAND E R, RUPPALT L B, BENNETT B R, et al. Effect of an in situ hydrogen plasma pre-treatment on the reduction of GaSb native oxides prior to atomic layer deposition[J]. Applied Surface Science, 2013, 277: 167-175. [25] PRZEZDZIECKA E, PARADOWSKA K, LISOWSKI W, et al. ZnO: Sb MBE layers with different Sb content-optical, electronic and structural analysis[J]. Journal of Alloys and Compounds, 2019, 797: 1163-1172. [26] YANG L Y, WU M L, CAI F L, et al. Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer[J]. Journal of Materials Chemistry A, 2018, 6(22): 10379-10387. [27] WU Y, WEI M Y, SUN Y X, et al. A buried interface modification strategy for enhancing the photovoltaic performance of NiOx-based inverted perovskite solar cells[J]. Vacuum, 2024, 222: 113057. [28] CHEN W C, WU M M, CHEN X, et al. Superior intermolecular noncovalent interactions empowered dopant-free hole transport materials for efficient and stable Sb2(S, Se)3 solar cells[J]. Advanced Functional Materials, 2024, 34(22): 2313403. [29] CHEN C, LIANG J W, ZHANG J J, et al. Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells[J]. Nano Energy, 2021, 90: 106608. |