[1] GOMASU S, SAHA S, GHOSH S, et al. High energy density achieved in novel lead-free BiFeO3-CaTiO3 ferroelectric ceramics for high-temperature energy storage applications[J]. ACS Applied Materials & Interfaces, 2024, 16(3): 3654-3664. [2] XIANG L, YUAN H L, YANG F, et al. Lowered ferromagnetic resonance linewidth and enhanced spin wave linewidth of nickel-based ferrite ceramics using hot-pressing method[J]. Ceramics International, 2024, 50(5): 8277-8283. [3] PENG X W, YANG B, DENG D J, et al. Lead-free KNN-based ceramics incorporated with Bi(Zn2/3Nb1/3)O3 possessing excellent optical transmittance and superior energy storage density[J]. Materials Research Bulletin, 2023, 165: 112294. [4] 苗 健, 邵 辉, 曹瑞龙. K0.5Na0.5NbO3掺杂对0.94Bi0.5Na0.5TiO3-0.06BaTiO3陶瓷储能性能的影响[J]. 人工晶体学报, 2024, 53(5): 882-888. MIAO J, SHAO H, CAO R L. Effect of K0.5Na0.5NbO3 doping on the energy storage performance of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics[J]. Journal of Synthetic Crystals, 2024, 53(5): 882-888 (in Chinese). [5] MA Y M, YANG S X, ZHAO C L, et al. Photochromic and electric field-regulating luminescence in high-transparent (K, Na)NbO3-based ferroelectric ceramics with two-phase coexistence[J]. ACS Applied Materials & Interfaces, 2022, 14(31): 35940-35948. [6] ZHANG M, YANG H B, YU Y W, et al. Energy storage performance of K0.5Na0.5NbO3-based ceramics modified by Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3[J]. Chemical Engineering Journal, 2021, 425: 131465. [7] AN Z X, YAO Y, WANG J, et al. Energy storage performance and piezoelectric response of silver niobate antiferroelectric thin film[J]. Ceramics International, 2024, 50(7): 12427-12433. [8] GOYAL R K, CHANDRASEKHAR M, SAHOO S. Structural, dielectric and electrical transport properties of thermal stable (1-x)K0.5Bi0.5TiO3-xBaTiO3 ceramics[J]. Ceramics International, 2024, 50(5): 7978-7987. [9] XIE A W, FU J, ZUO R Z, et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh-energy-storage capacitors[J]. Advanced Materials, 2022, 34(34): e2204356. [10] XIAO S B, SUI H T, WU F L, et al. Optimizing energy storage performance of 0.9(Na0.5Bi0.5)(Fe0.02Ti0.98)O3-0.1SrTiO3 flexible capacitor via relaxation strategy[J]. Ceramics International, 2024, 50(5): 7713-7722. [11] WANG W, ZHANG L Y, LI C, et al. Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics[J]. Chemical Engineering Journal, 2022, 446: 137389. [12] WANG M Q, LIN Y, YUAN Q B, et al. Significantly improved energy storage performances of K0.5Na0.5NbO3 lead-free ceramics via a composition optimization strategy[J]. Inorganic Chemistry Frontiers, 2023, 10(15): 4578-4586. [13] XIAO W R, LIU Z, ZHANG C, et al. Free energy regulation and domain engineering of BaTiO3-NaNbO3 ceramics for superior dielectric energy storage performance[J]. Chemical Engineering Journal, 2023, 461: 142070. [14] 任 香, 李 筱, 郭中秋, 等. 稀土Ce4+掺杂对BCT-BZNT陶瓷结构和储能性能的影响[J]. 硅酸盐学报, 2024, 52(4): 1355-1364. REN X, LI X, GUO Z Q, et al. Effect of rare-earth Ce4+ doping on structure and energy storage properties of BCT-BZNT ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1355-1364 (in Chinese). [15] DAI Z H, ZHANG F B, RAFIQ M N, et al. Design of a KNN-BZT ceramic with high energy storage properties and transmittance under low electric fields[J]. ACS Omega, 2023, 8(8): 7883-7890. [16] LIU C X, DAI Z H, FENG Y, et al. High energy storage characteristics for Ba0.9Sr0.1TiO3 (BST) doped Na0.7Bi0.1NbO3 (NBN) ceramics[J]. Journal of Energy Storage, 2023, 73: 109044. [17] ZHANG M, YANG H B, LIN Y, et al. Significant increase in comprehensive energy storage performance of potassium sodium niobate-based ceramics via synergistic optimization strategy[J]. Energy Storage Materials, 2022, 45: 861-868. [18] FU H X, LI S, LIN Y C, et al. Enhancement of piezo-photocatalytic activity in perovskite (Bi0.2Na0.2Ba0.2K0.2La0.2)TiO3 oxides via high entropy induced lattice distortion and energy band reconfiguration[J]. Ceramics International, 2024, 50(6): 9159-9168. [19] KHAN N U, YUN W S, ULLAH A, et al. Large electrostrictive response via tailoring ergodic relaxor state in Bi1/2Na1/2TiO3- based ceramics with Bi(Mn1/2Ce1/2)O3 end-member[J]. Ceramics International, 2024, 50(6): 8790-8799. [20] LU J X, YAO Z H, HAO H, et al. Antiferroelectric ceramic capacitors with high energy-storage densities and reduced sintering temperature[J]. Ceramics International, 2024, 50(1): 1941-1946. [21] LI W Q, WANG S B, LIN C L, et al. Enhanced energy-storage density in (Pb0.98La0.02)(Zr0.45-xSn0.55Hfx)0.995O3 antiferroelectric ceramics[J]. Scripta Materialia, 2024, 242: 115959. [22] DENG D, IRSHAD M S, KONG X, et al. Potassium sodium niobate-based transparent ceramics with high piezoelectricity and enhanced energy storage density[J]. Journal of Alloys and Compounds, 2023, 953: 170081. [23] GAO X Y, CHENG Z X, CHEN Z B, et al. The mechanism for the enhanced piezoelectricity in multi-elements doped (K, Na)NbO3 ceramics[J]. Nature Communications, 2021, 12(1): 881. [24] CHEN Q F, GAO T T, LANG R, et al. Achieving outstanding temperature stability in KNN-based lead-free ceramics for energy storage behavior[J]. Journal of the European Ceramic Society, 2023, 43(6): 2442-2451. [25] DAI Z H, LI D Y, ZHOU Z J, et al. A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics[J]. Chemical Engineering Journal, 2022, 427: 131959. [26] YANG T H, YE W H, LIN J W, et al. Enhanced energy storage performance in Bi(Mg1/3Zn1/3Ta1/3)O3-doped (K1/2Na1/2)NbO3 high-entropy ceramics[J]. Ceramics International, 2023, 49(22): 36173-36180. [27] CHAI Q Z, PENG Z H, WU D, et al. Significant improvement of comprehensive energy storage performance and transparency in Sr0.7La0.2TiO3-doped (K, Na)NbO3 lead-free ceramics[J]. Journal of Alloys and Compounds, 2023, 968: 171908. [28] DAI Z H, WANG S B, LIU Y, et al. Energy storage performance of SrSc0.5Nb0.5O3 modified (Bi, Na)TiO3-based ceramic under low electric fields[J]. Journal of the American Ceramic Society, 2023, 106(4): 2366-2374. [29] 盛林生, 沈 超, 姜梦琦, 等. (1-x)(0.75K0.5Bi0.5TiO3-0.25BiFeO3)-xNa0.73Bi0.09NbO3电介质陶瓷的微观结构与储能性能[J]. 硅酸盐学报, 2024, 52(4): 1335-1344. SHENG L S, SHEN C, JIANG M Q, et al. Microstructure and energy storage performance of (1-x)(0.75K0.5Bi0.5TiO3-0.25BiFeO3)-xNa0.73Bi0.09NbO3 ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1335-1344 (in Chinese). [30] 肖齐龙, 王世宇, 蒋 芮, 等. ZnNb2O6掺杂BNT基无铅弛豫铁电体陶瓷的性能研究[J]. 人工晶体学报, 2024, 53(1): 154-162. XIAO Q L, WANG S Y, JIANG R, et al. Properties of ZnNb2O6 doped BNT-based lead-free relaxor ferroelectric ceramics[J]. Journal of Synthetic Crystals, 2024, 53(1): 154-162 (in Chinese). [31] ZHU W, SHEN Z Y, DENG W, et al. A review: (Bi, Na)TiO3 (BNT)-based energy storage ceramics[J]. Journal of Materiomics, 2024, 10(1): 86-123. [32] NING Y T, PU Y P, WU C H, et al. Design strategy of high-entropy perovskite energy-storage ceramics: a review[J]. Journal of the European Ceramic Society, 2024, 44(8): 4831-4843. |