Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (12): 2127-2135.DOI: 10.16553/j.cnki.issn1000-985x.2025.0138
• Research Articles • Previous Articles Next Articles
XUE Jingyi1(
), HU Qiguo1(
), YAN Zhaoqiang2, LIU Ying3, ZHANG Pizhu1
Received:2025-07-01
Online:2025-12-20
Published:2026-01-04
CLC Number:
XUE Jingyi, HU Qiguo, YAN Zhaoqiang, LIU Ying, ZHANG Pizhu. Simulation Study of Low-Frequency Bandgap for Triple Helix Beam Phononic Crystal[J]. Journal of Synthetic Crystals, 2025, 54(12): 2127-2135.
| Geometric parameter | a | h | R | r | n | w | rz | tp | ts |
|---|---|---|---|---|---|---|---|---|---|
| Value/mm | 40 | 30 | 18.6 | 11.5 | 0.8 | 1 | 4 | 2 | 1 |
Table 1 Geometrical parameters of the crystal cell
| Geometric parameter | a | h | R | r | n | w | rz | tp | ts |
|---|---|---|---|---|---|---|---|---|---|
| Value/mm | 40 | 30 | 18.6 | 11.5 | 0.8 | 1 | 4 | 2 | 1 |
| Material | Density/(kg·m-3) | Elastic modulus/Pa | Poisson ratio |
|---|---|---|---|
| Lead | 11 600 | 4.08×1010 | 0.369 |
| Epoxy resin | 1 180 | 4.35×109 | 0.367 |
Table 2 Material parameters of the crystal cell
| Material | Density/(kg·m-3) | Elastic modulus/Pa | Poisson ratio |
|---|---|---|---|
| Lead | 11 600 | 4.08×1010 | 0.369 |
| Epoxy resin | 1 180 | 4.35×109 | 0.367 |
Fig.8 Numerical simulation of phononic crystal plates under different operating conditions. (a) Line load; (b) front end line load; (c) point load; (d) torque
Fig.9 Effect of geometric parameter variations on bandgap. (a) Effect of helix plate thickness tp on band gap; (b) effect of cylindrical vibrator radius rz on band gap; (c) effect of helix groove width w on band gap
| [1] | 张思文, 张 军, 章晓轩, 等. 局域共振声子结构在汽车地毯低频隔声中的应用[J]. 汽车工程, 2016, 38(3): 362-367. |
| ZHANG S W, ZHANG J, ZHANG X X, et al. Application of locally resonant phononic structures to the low-frequency sound insulation of vehicle carpets[J]. Automotive Engineering, 2016, 38(3): 362-367 (in Chinese). | |
| [2] | RUAN Y D, LIANG X, HUA X Y, et al. Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals[J]. Ocean Engineering, 2021, 225: 108804. |
| [3] | 窦玲玲, 米永振, 黄斌根, 等. 直升机舱室声学超材料壁板的低频隔声性能分析[J]. 噪声与振动控制, 2021, 41(1): 12-15+20. |
| DOU L L, MI Y Z, HUANG B G, et al. Low-frequency sound insulation analysis of acoustic metamaterial cabin panels in a helicopter[J]. Noise and Vibration Control, 2021, 41(1): 12-15+20 (in Chinese). | |
| [4] | GUO J C, ZHANG Z. Mass inertia moment-based design of band gap characteristics in zigzag beam-supported stepped phononic crystals[J]. Applied Physics A, 2022, 128(2): 126. |
| [5] | XIAO Y, WEN J H, WEN X S. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators[J]. Journal of Physics D: Applied Physics, 2012, 45(19): 195401. |
| [6] | WANG Q, LI J Q, ZHANG Y, et al. Bandgap properties in metamaterial sandwich plate with periodically embedded plate-type resonators[J]. Mechanical Systems and Signal Processing, 2021, 151: 107375. |
| [7] | ZHAO C Y, ZHENG J Y, SANG T, et al. Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration[J]. Construction and Building Materials, 2021, 283: 122802. |
| [8] | 刘 坚, 陈俊煌, 夏百战, 等. 区间模型下声子晶体的带隙优化研究[J]. 振动与冲击, 2018, 37(17): 115-121. |
| LIU J, CHEN J H, XIA B Z, et al. Bandgap optimization of photonic crystal based on interval model[J]. Journal of Vibration and Shock, 2018, 37(17): 115-121 (in Chinese). | |
| [9] | 郑明军, 李天华, 左雪超. C形槽声子晶体带隙机理及低频减振研究[J]. 振动与冲击, 2025, 44(7): 258-266. |
| ZHENG M J, LI T H, ZUO X C. Band gap mechanism and low-frequency vibration reduction of C-slot phononic crystal plate[J]. Journal of Vibration and Shock, 2025, 44(7): 258-266 (in Chinese). | |
| [10] | 李淑琴, 宋 京, 任景舜, 等. 功能梯度材料声子晶体低频带隙特性研究[J]. 噪声与振动控制, 2024, 44(5): 75-81. |
| LI S Q, SONG J, REN J S, et al. Study on low frequency band gap characteristics of phonon crystals of functionally graded materials[J]. Noise and Vibration Control, 2024, 44(5): 75-81 (in Chinese). | |
| [11] | 徐庚辉, 肖汉林, 张 琳, 等. 基于FGMs的声子晶体带隙调控及振动特性研究[J]. 振动与冲击, 2024, 43(10): 89-97. |
| XU G H, XIAO H L, ZHANG L, et al. Investigation on the tunable band-gap and vibration characteristics of phononic crystals based on FGMs[J]. Journal of Vibration and Shock, 2024, 43(10): 89-97 (in Chinese). | |
| [12] | LI L J, GANG X Y, SUN Z Y, et al. Design of phononic crystals plate and application in vehicle sound insulation[J]. Advances in Engineering Software, 2018, 125: 19-26. |
| [13] | GAO P L, CLIMENTE A, SÁNCHEZ-DEHESA J, et al. Single-phase metamaterial plates for broadband vibration suppression at low frequencies[J]. Journal of Sound and Vibration, 2019, 444: 108-126. |
| [14] | KRUSHYNSKA A O, GLIOZZI A S, FINA A, et al. Dissipative dynamics of polymer phononic materials[J]. Advanced Functional Materials, 2021, 31(30): 2103424. |
| [15] | 王 斌, 李 琦, 徐柯清. 新形声子晶体的带隙特性与减振分析[J/OL]. 应用声学, 2025: 1-9. (2025-06-23). . |
| WANG B, LI Q, XU K Q. Band gap characteristics and vibration reduction analysis of new phononic crystals[J/OL]. China Industrial Economics, 2025: 1-9. (2025-06-23). (in Chinese). | |
| [16] | SONG Y B, FENG L P, LIU Z B, et al. Suppression of the vibration and sound radiation of a sandwich plate via periodic design[J]. International Journal of Mechanical Sciences, 2019, 150: 744-754. |
| [17] | BILAL O R, FOEHR A, DARAIO C. Reprogrammable phononic metasurfaces[J]. Advanced Materials, 2017, 29(39): 1700628. |
| [18] | COLLET M, OUISSE M, RUZZENE M, et al. Floquet-Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems[J]. International Journal of Solids and Structures, 2011, 48(20): 2837-2848. |
| [19] | PENNEC Y, VASSEUR J O, DJAFARI-ROUHANI B, et al. Two-dimensional phononic crystals: examples and applications[J]. Surface Science Reports, 2010, 65(8): 229-291. |
| [20] | LIU X N, HU G K, SUN C T, et al. Wave propagation characterization and design of two-dimensional elastic chiral metacomposite[J]. Journal of Sound and Vibration, 2011, 330(11): 2536-2553. |
| [1] | LI Wenjing, TIAN Junhong, LI Rensheng, LI Jianing, SUN Xiaowei. Improving Low-Frequency Sound Transmission Loss of Double-Layer Panels with a Perforated Sandwich Structure with Porous Lining [J]. Journal of Synthetic Crystals, 2025, 54(4): 581-588. |
| [2] | XIAO Weimin, NIE Jingkai, ZHAO Junjuan, HU Wencheng, HAN Yu, SHI Lei. Topological Edge States of Concave Hexagonal Gyroscopic Phononic Crystals [J]. Journal of Synthetic Crystals, 2025, 54(11): 1937-1946. |
| [3] | WANG Zhong, JIANG Jiao, SONG Yang, ZHANG Lei, GU Quan. Bandgap Analysis and Optimization of Axisymmetric Low-Frequency Local Resonance Phononic Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1177-1185. |
| [4] | LIU Song, ZHAO Renjie, DU Yifan, WU Fang, SONG Hebin, GAO Peng. Negative Refraction Characteristics of Acoustic Hyperbolic Configuration Metamaterials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 246-251. |
| [5] | CHU Fan, ZHAO Chunfeng. Design of Two-Dimensional Layered Phononic Crystal Structures Based on LightGBM and Genetic Algorithm [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1720-1728. |
| [6] | FU Qiang, YAO Fei, ZHANG Hongyan. Band Gap Characteristics and Experimental Study of Local Resonance Sandwich Metastructure Beam [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 65-72. |
| [7] | HU Peizhou, ZHAO Jingbo, LIU Hong, ZHANG Xiaosheng, HAN Donghai, YAO Hong, ZHANG Guangjun. Low-Frequency Band Gap of Novel Two-Dimensional Phonon Crystal and Its Formation Mechanism [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1432-1440. |
| [8] | LI Wenbo, ZHANG Qiaoxin. Low-Frequency Vibration Band Gap Characteristics of Two-Dimensional Local Resonant Periodic Lattices Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1100-1109. |
| [9] | LIU Hong, ZHAO Jingbo, YAO Hong, HAN Donghai, ZHANG Xiaosheng, WANG Chen, ZHANG Guangjun. Bandgaps of a Helmholtz-Type Phononic Crystal with Adjustable Chamber [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(4): 590-597. |
| [10] | LI Mengchang, GUO Shaojie, ZHANG Hongyan. Numerical and Experimental Study on Axial Band Gap Characteristics of Pipeline Metastructure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(1): 65-72. |
| [11] | WEI Yiheng, FAN Jieping, QIU Kepeng. Optimal Band-Gap Design of Two-Dimensional Chiral Phononic Crystals Based on ISIGHT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(1): 56-64. |
| [12] | CHEN Xinhua, ZHANG Chen, CHEN Meng, GUO Zhenkun, HAO Tianqi. Vibration Bandgap Characteristics of Phononic Crystals with Fractal Concave Angle Honeycomb Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1343-1352. |
| [13] | HAN Donghai, ZHANG Guangjun, ZHAO Jingbo, HU Peizhou, YAO Hong, LIU Hong. Low-Frequency Band Gap Mechanism and Sound Insulation Characteristics of Helmholtz Periodic Structure with Double Labyrinth Tubes [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(7): 1212-1219. |
| [14] | LI Lixia, LI Pengguo, JIA Qi, LI Ling. Very Low Frequency Broadband Gap Mechanism of Tian-Shaped Seismic Metamaterials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(3): 419-427. |
| [15] | JIN Fenghua, GUO Hui, SUN Pei, YUAN Tao, ZHENG Lihui, WANG Yansong. Simulation and Optimization of Vibration Reduction Performance of Square Lattice Sandwich Plate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(2): 248-255. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS