| [1] |
CROY J R, KIM D, BALASUBRAMANIAN M, et al. Countering the voltage decay in high capacity xLi2MnO3·(1-x)LiMO2Electrodes (M=Mn, Ni, Co) for Li+-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(6): A781-A790.
|
| [2] |
LIU Y J, WANG Q L, ZHANG Z Q, et al. Investigation the electrochemical performance of layered cathode material Li1.2Ni0.2Mn0.6O2 coated with Li4Ti5O12 [J]. Advanced Powder Technology, 2016, 27(4): 1481-1487.
|
| [3] |
JOHNSON C S, LI N C, LEFIEF C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7)[J]. Chemistry of Materials, 2008, 20(19): 6095-6106.
|
| [4] |
YIN S Y, CHEN H Y, CHEN J, et al. Chemical-mechanical effects in Ni-rich cathode materials[J]. Chemistry of Materials, 2022, 34(4): 1509-1523.
|
| [5] |
宁静蓉. 高电压锂离子电池电解液在电极界面作用的机制研究[D]. 武汉: 湖北大学, 2022.
|
|
NING J R. Study on the mechanism of electrolyte interaction at electrode interface in high voltage lithium ion battery[D]. Wuhan: Hubei University, 2022 (in Chinese).
|
| [6] |
XU X, ZHU H, TANG Y, et al. Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials[J]. Nano Energy, 2022, 100: 107502.
|
| [7] |
ANH V T, TRAN VU H A, NGUYEN V H, et al. Enhancing electrochemical performance of Ni-rich cathodes for Li-ion batteries through spatial atomic layer deposition of ZnO coatings[J]. Materials Chemistry and Physics, 2025, 336: 130544.
|
| [8] |
FENG Y H, XU H, WANG B, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials by Al2O3 coating[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(3): 031005.
|
| [9] |
SHIM J H, LEE S H, PARK S S. Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery[J]. Chemistry of Materials, 2014, 26(8): 2537-2543.
|
| [10] |
PENG Z D, HUANG M, WANG W G, et al. Enhancing the structure and interface stability of LiNi0.83Co0.12Mn0.05O2 cathode material for Li-ion batteries via facile CeP2O7 coating[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(15): 4881-4893.
|
| [11] |
VÁSQUEZ F A, ROSERO-NAVARRO N C, MIURA A, et al. Beneficial effect of LiFePO4/C coating on Li0.9Mn1.6Ni0.4O4 obtained by microwave heating[J]. Electrochimica Acta, 2023, 437: 141544.
|
| [12] |
LIU W, OH P, LIU X E, et al. Countering voltage decay and capacity fading of lithium-rich cathode material at 60 ℃ by hybrid surface protection layers[J]. Advanced Energy Materials, 2015, 5(13): 1500274.
|
| [13] |
HU G R, ZHANG M F, WU L L, et al. Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2017, 690: 589-597.
|
| [14] |
ZHAN X W, GAO S, CHENG Y T. Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance[J]. Electrochimica Acta, 2019, 300: 36-44.
|
| [15] |
LIU Y J, FAN X J, HUANG X, et al. Electrochemical performance of Li1.2Ni0.2Mn0.6O2 coated with a facilely synthesized Li1.3Al0.3Ti1.7(PO4)3 [J]. Journal of Power Sources, 2018, 403: 27-37.
|
| [16] |
陈家有. 氮化碳均匀包覆Li1.3Al0.3Ti1.7(PO4)3在复合固态电解质膜中的应用及机理研究[D]. 青岛:青岛大学, 2024.
|
|
CHEN J Y. Application and mechanism study of carbon nitride uniformly coated Li1.3Al0.3Ti1.7(PO4)3 in composite solid state electrolyte membrane[D]. Qingdao: Qingdao University, 2024 (in Chinese).
|
| [17] |
李潇逸. 固态锂电池的Li1.3Al0.3Ti1.7(PO4)3固体电解质制备及界面修饰[D]. 徐州: 中国矿业大学, 2023.
|
|
LI X Y. Preparation and Interfacial Modification of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes for solid state lithium battery[D]. Xuzhou: China University of Mining and Technology, 2023 (in Chinese).
|
| [18] |
刘圣奇, 杨晨, 张真硕, 等. 原位构建ZnO梯度缓冲层对Li|LATP界面稳定性的研究[J]. 材料科学, 2025, 15(4): 816-824.
|
|
LIU S Q, YANG C, ZHANG Z S, et al. Study on the stability of Li|LATP interface by in-situ ZnO gradient buffer layer[J]. Material Sciences, 2025, 15(4): 816-824 (in Chinese).
|
| [19] |
TSAI D L, YEH C N. Modifying Li1.3Al0.3Ti1.7(PO4)3 electrolyte-anode interface with two-dimensional materials for all-solid-state lithium batteries[J]. ECS Meeting Abstracts, 2024, MA2024-02(8): 1134.
|
| [20] |
JEONG W, LIU L Y, LIM H S, et al. A study on the improvement of ion conductivity of lithium aluminum titanium phosphate-based solid-state electrolyte by the addition of divalent cations[J]. Journal of the Korean Ceramic Society, 2025, 62(1): 83-89.
|
| [21] |
HE Y L, LI Y, YAO N C, et al. Modification of LiNi0.5Co0.2Mn0.3O2 with a NaAlO2 coating produces a cathode with increased long-term cycling performance at a high voltage cutoff[J]. Ceramics International, 2020, 46(6): 7625-7633.
|
| [22] |
YU H F, WANG S L, HU Y J, et al. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability[J]. Green Energy & Environment, 2022, 7(2): 266-274.
|
| [23] |
ZENG X F, JIAN T Z, LU Y, et al. Enhancing high-temperature and high-voltage performances of single-crystal LiNi0.5Co0.2Mn0.3O2 cathodes through a LiBO2/LiAlO2 dual-modification strategy[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16): 6293-6304.
|
| [24] |
WANG L, HU Y H. Surface modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with Li2O-B2O3-LiBr for lithium-ion batteries[J]. International Journal of Energy Research, 2019, 43(9): 4644-4651.
|