Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (7): 1132-1145.DOI: 10.16553/j.cnki.issn1000-985x.2025.0075
• Reviews • Previous Articles Next Articles
YU Mubing1,2(
), GAO Gang1,2(
), ZHAO Yongbiao3(
), ZHU Jiaqi1,2
Received:2025-04-13
Online:2025-07-20
Published:2025-07-30
CLC Number:
YU Mubing, GAO Gang, ZHAO Yongbiao, ZHU Jiaqi. Research on Crystallization Kinetics Regulation of Blue Quasi-2D Perovskites and Their Application in Electroluminescent Devices[J]. Journal of Synthetic Crystals, 2025, 54(7): 1132-1145.
Fig.1 (a) Schematic diagram of blue quasi-2D perovskite crystal structure, (b) schematic diagram of energy transfer pathways in quasi-2D perovskite quantum well[23], (c) energy band structure schematic diagram of common carrier transport layer and light-emitting layer[30]
Fig.2 (a) Schematic diagram representing the strategy adopted to form intermediate n phases for blue emission[32], TA spectra of pristine (b) and GA10 perovskite film (c)[33], (d) UV-Vis absorption and steady-state PL spectra of PEA2(Rb x Cs1-x )2Pb3Br10[34],(e) electronic density of states (DOS) of CsPbBr3, Cs0.75EA0.25PbBr3, and Cs0.5EA0.5PbBr3[35]
Fig.3 (a) PL spectra of perovskite PEA2Cs1.5Pb2.5Br8.5 with 0%~60% IPABr additive[36], (b) TA spectra of PEA2Cs1.5Pb2.5Br8.5 with 0% and 40% IPABr[36], (c) the integrated intensity-q relations of GIWAXS patterns for the CsPbClBr2 nanocrystal films with different ratios between DPPABr and PEABr[37], (d) schematic diagram of low-dimensional components engineering of P-PDABr2[38], UV-Vis spectra (e) and PL spectra (f) of different ligand treated quasi-2D perovskite film[39]
Fig.4 GIWAXS images of control (a) and 8%-PPNCl (b) blue quasi-2D perovskite film[40], (c) schematic diagram of defect passivation and low-dimensional phase regulation of DFBP in the pristine and target perovskites[41], (d) PDOS curves of the pristine perovskite, perovskite containing a chloride vacancy and renovated by C=O group[42], (e) PDOS curves of the pristine perovskite, perovskite containing a lead-chloride defect and renovated by hydroxy group[42], (f) schematic and DFT calculated destabilization energy of PbBr2 coordinated with GABA and PEA binding to the surface[43]
Fig.5 (a) UV-Vis absorption and PL spectra of quasi-2D perovskite films without and with 20% NaBr[44], TA spectra UV-Vis of quasi-2D perovskite films without (b) and with 20% NaBr (c)[44], (d) schematic illustrated the rearrangement of phase distribution by adding Na+ in quasi-2D perovskites[44], UV-Vis absorption spectra (e) and TRPL curves (f) of quasi-2D perovskite films spin-coated on pristine and alkali-treated PEDOT∶PSS films[45], (g) PLQY of LiX incorporated blue, green, and red perovskite films[46]
Fig.6 In-situ GIWAXS images for the control (a) and DMSO steam-treated (b) quasi-2D phases of perovskite film[47], (c) schematic illustration of the suppressed energy transfer losses for the rearranged phase distribution[47], (d) schematic diagrams of the vertical domain distribution in the control and target film[48], the absorption and normalized PL spectra of the control (e) and thermal gradient treated (f) quasi-2D perovskite film[48]
Fig.7 (a) Schematic diagram of rearrangement of the phase distribution of quasi-2D perovskites after CsCl diffusion[50], TA kinetics probed at selected wavelengths in quasi-2D perovskites without (b) and with (c) CsCl incorporation[50], GIWAXS diffraction patterns of perovskite films on pristine (d) and TEOS-modified (e) PVK layers at different annealing times[51]
Fig.8 GIWAXS images of perovskite films grown on the control (a) and PS-modified (b) PEDOT∶PSS layers[52], (c) steady-state PL spectra and (d) PLQYs of control and PS-modified perovskite films[52], (e) schematic illustration of the formation of n-phase due to different absorption energy between the PBA+/Cs+ and [PbBr6]4-[53], (f) DFT calculation results of the absorption energy between the PBA+/Cs+ and [PbBr6]4-[53], GIWAXS images of pristine perovskite (g) and GASCN modified (h) perovskite film[53], UV-Vis absorption and TA spectra with different time scales of pristine (i) and modified (j) perovskite films[54]
| [1] | FAN X T, WANG S L, YANG X, et al. Brightened bicomponent perovskite nanocomposite based on Förster resonance energy transfer for micro-LED displays[J]. Advanced Materials, 2023, 35(30): e2300834. |
| [2] | WANG L, XU J S, LUO J J, et al. Thermally evaporated perovskite light-emitting diodes for wide-color-gamut displays in AR/VR devices[J]. Device, 2024, 2(10): 100549. |
| [3] | KIM M S, SADHUKHAN P, MYOUNG J M. High-performance blue perovskite films and micro-arrays for light-emitting diodes with ionic liquid interlayer[J]. Advanced Functional Materials, 2024, 34(1): 2309436. |
| [4] | DENG S B, SHI E Z, YUAN L, et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites[J]. Nature Communications, 2020, 11(1): 664. |
| [5] | JIANG X M, XIA S Q, ZHANG J, et al. Exploring organic metal halides with reversible temperature-responsive dual-emissive photoluminescence[J]. ChemSusChem, 2019, 12(24): 5228-5232. |
| [6] | FENG A, JIANG X, ZHANG X, et al. Shape control of metal halide perovskite single crystals: from bulk to nanoscale [J]. Chemistry of Materials, 2020, 32(18): 7602-7617. |
| [7] | YANG F, ZENG Q S, DONG W, et al. Rational adjustment to interfacial interaction with carbonized polymer dots enabling efficient large-area perovskite light-emitting diodes[J]. Light, Science & Applications, 2023, 12(1): 119. |
| [8] | YU Y, TANG Y Y, WANG B F, et al. Red perovskite light-emitting diodes: recent advances and perspectives[J]. Laser & Photonics Reviews, 2023, 17(2): 2200608. |
| [9] | YU Y, WANG B F, SHEN Y, et al. Regulating perovskite crystallization through interfacial engineering using a zwitterionic additive potassium sulfamate for efficient pure-blue light-emitting diodes[J]. Angewandte Chemie (Internation Edition), 2024, 63(7): e202319730. |
| [10] | KARLSSON M, YI Z Y, REICHERT S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J]. Nature Communications, 2021, 12(1): 361. |
| [11] | CHENG L, JIANG T, CAO Y, et al. Multiple-quantum-well perovskites for high-performance light-emitting diodes[J]. Advanced Materials, 2020, 32(15): e1904163. |
| [12] | ZHANG L, HU S, GUO M, et al. Manipulation of charge dynamics for efficient and bright blue perovskite light-emitting diodes with chiral ligands [J]. Advanced Materials, 2023, 35(38): 2302059. |
| [13] | XIA Y, LOU Y H, ZHOU Y H, et al. Reduced confinement effect by isocyanate passivation for efficient sky-blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 2022, 32(47): 2208538. |
| [14] | LI Y H, XIA Y, ZHANG Z P, et al. In situ hydrolysis of phosphate enabling sky-blue perovskite light-emitting diode with EQE approaching 16.32%[J]. ACS Nano, 2024, 18(8): 6513-6522. |
| [15] | LIU S C, GUO Z Y, WU X X, et al. Zwitterions narrow distribution of perovskite quantum wells for blue light-emitting diodes with efficiency exceeding 15[J]. Advanced Materials, 2023, 35(3): e2208078. |
| [16] | YUAN S C, FANG T, HUANG J, et al. Balancing charge injection via a tailor-made electron-transporting material for high performance blue perovskite QLEDs[J]. ACS Energy Letters, 2023, 8(1): 818-826. |
| [17] | CHU Z M, ZHANG W, JIANG J, et al. Blue perovskite light-emitting diodes using multifunctional small molecule dopants[J]. Advanced Materials, 2025, 37(17): e2409718. |
| [18] | KO P K, GE J, DING P, et al. The deepest blue: major advances and challenges in deep blue emitting quasi-2D and nanocrystalline perovskite LEDs[J]. Advanced Materials, 2024, 2407764. |
| [19] | REN Z W, WANG K, SUN X W, et al. Strategies toward efficient blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 2021, 31(30): 2100516. |
| [20] | REN Z W, YU J H, QIN Z T, et al. High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers[J]. Advanced Materials, 2021, 33(1): e2005570. |
| [21] | CHENG Y Z, WAN H Y, SARGENT E H, et al. Reduced-dimensional perovskites: quantum well thickness distribution and optoelectronic properties[J]. Advanced Materials, 2024: e2410633. |
| [22] | LI X, HOFFMAN J M. The Kanatzidis 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency [J]. Chemical Reviews, 2021, 121(4): 2230-2291. |
| [23] | CHEN P, MENG Y, AHMADI M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes[J]. Nano Energy, 2018, 50: 615-622. |
| [24] | QUAN L N, ZHAO Y B, GARCÍA DE ARQUER F P, et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission[J]. Nano Letters, 2017, 17(6): 3701-3709. |
| [25] | YU M B, MEI X Y, QIN T X, et al. Modulating phase distribution and passivating surface defects of quasi-2D perovskites via potassium tetrafluoroborate for light-emitting diodes[J]. Chemical Engineering Journal, 2022, 450: 138021. |
| [26] | XIA Y, LI Y H, WANG Z K, et al. Domain distribution management of quasi-2D perovskites toward high-performance blue light-emitting diodes[J]. Advanced Functional Materials, 2023, 33(35): 2303423. |
| [27] | YANG J N, WANG J J, YIN Y C, et al. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes[J]. Chemical Society Reviews, 2023, 52(16): 5516-5540. |
| [28] | GAO Y, CAI Q T, HE Y F, et al. Highly efficient blue light-emitting diodes based on mixed-halide perovskites with reduced chlorine defects[J]. Science Advances, 2024, 10(29): 5645. |
| [29] | NENON D P, PRESSLER K, KANG J, et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer lewis bases[J]. Journal of the American Chemical Society, 2018, 140(50): 17760-17772. |
| [30] | CHU Z M, YOU J B. Blue light-emitting diodes based on pure bromide perovskites[J]. Advanced Materials, 2024: 2409867. |
| [31] | WEI Z H, XING J. The rise of perovskite light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 3035-3042. |
| [32] | YANTARA N, JAMALUDIN N F, FEBRIANSYAH B, et al. Designing the perovskite structural landscape for efficient blue emission[J]. ACS Energy Letters, 2020, 5(5): 1593-1600. |
| [33] | ZHOU Y H, WANG C Y, YUAN S, et al. Stabilized low-dimensional species for deep-blue perovskite light-emitting diodes with EQE approaching 3.4[J]. Journal of the American Chemical Society, 2022, 144(40): 18470-18478. |
| [34] | JIANG Y Z, QIN C C, CUI M H, et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 2019, 10(1): 1868. |
| [35] | CHU Z M, ZHAO Y, MA F, et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes[J]. Nature Communications, 2020, 11(1): 4165. |
| [36] | XING J, ZHAO Y B, ASKERKA M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes[J]. Nature Communications, 2018, 9(1): 3541. |
| [37] | WANG C H, HAN D B, WANG J H, et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes[J]. Nature Communications, 2020, 11(1): 6428. |
| [38] | YUAN S, WANG Z K, XIAO L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes[J]. Advanced Materials, 2019, 31(44): e1904319. |
| [39] | JIN Y, WANG Z K, YUAN S, et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes[J]. Advanced Functional Materials, 2020, 30(6): 1908339. |
| [40] | YUAN S, DAI L J, SUN Y Q, et al. Efficient blue electroluminescence from reduced-dimensional perovskites[J]. Nature Photonics, 2024, 18(5): 425-431. |
| [41] | WANG B, ZHOU Y H, YUAN S, et al. Low-dimensional phase regulation to restrain non-radiative recombination for sky-blue perovskite LEDs with EQE exceeding 15[J]. Angewandte Chemie (International Edition), 2023, 62(21): e202219255. |
| [42] | YU M B, QIN T X, GAO G, et al. Multiple defects renovation and phase reconstruction of reduced-dimensional perovskites via in situ chlorination for efficient deep-blue (454 nm) light-emitting diodes[J]. Light, Science & Applications, 2025, 14(1): 102. |
| [43] | WANG Y K, MA D X, YUAN F L, et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters[J]. Nature Communications, 2020, 11(1): 3674. |
| [44] | PANG P Y, JIN G R, LIANG C, et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes[J]. ACS Nano, 2020, 14(9): 11420-11430. |
| [45] | WANG Y Y, XU Y T, YUN J Y, et al. Suppressing interfacial nonradiative recombination by alkali hydroxides for efficient blue perovskite light-emitting diodes[J]. Chemical Engineering Journal, 2024, 486: 149964. |
| [46] | WU T, LI J N, ZOU Y T, et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation[J]. Angewandte Chemie (International Edition), 2020, 59(10): 4099-4105. |
| [47] | PENG X F, HE B C, ZHENG H L, et al. Suppressed energy transfer loss of dion-jacobson perovskite enabled by DMSO vapor treatment for efficient sky-blue light-emitting diodes[J]. ACS Energy Letters, 2023, 8(1): 339-346. |
| [48] | XIA Y, SONG B, ZHANG Z P, et al. Vertically concentrated quantum wells enabling highly efficient deep-blue perovskite light-emitting diodes[J]. Angewandte Chemie (International Edition), 2024, 63(22): e202403739. |
| [49] | TONG Y F, BI X Y, XU S, et al. In situ halide exchange of cesium lead halide perovskites for blue light-emitting diodes[J]. Advanced Materials, 2023, 35(3): e2207111. |
| [50] | CHU Z M, ZHANG W, JIANG J, et al. Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt[J]. Nature Electronics, 2023, 6(5): 360-369. |
| [51] | WANG L, SU Z H, SHEN Y, et al. Regulated perovskite crystallization for efficient blue light-emitting diodes via interfacial molecular network[J]. Advanced Functional Materials, 2024, 34(36): 2401297. |
| [52] | YU Y, WANG B F, SHEN Y, et al. Regulating perovskite crystallization through interfacial engineering using a zwitterionic additive potassium sulfamate for efficient pure-blue light-emitting diodes[J]. Angewandte Chemie (International Edition), 2024, 63(7): e202319730. |
| [53] | ZHANG F J, GAO Y B, WANG D D, et al. Phase distribution management for high-efficiency and bright blue perovskite light-emitting diodes[J]. Nano Energy, 2024, 120: 109144. |
| [54] | ZHANG F J, YANG Y G, GAO Y B, et al. High-performance blue perovskite light-emitting diodes enabled by synergistic effect of additives[J]. Nano Letters, 2024, 24(4): 1268-1276. |
| [1] | ZHANG Shuyi, LIU Gengling, WANG Hao, LU Yue, JIANG Xianyuan, LI Wenzhuo, LIU Cong, LYU Yingbo, WU Zhongchen, LIU Dong, CHEN Yao. Research Progress of Tin-Based Perovskite Crystals and Devices [J]. Journal of Synthetic Crystals, 2025, 54(7): 1189-1207. |
| [2] | MIN Yueqi, XIE Wenqin, XIE Liang, AN Kang. Optoelectronic Properties of CsPbX3 (X=Cl, Br, I) Regulated by Pd Doping [J]. Journal of Synthetic Crystals, 2025, 54(4): 605-616. |
| [3] | DUAN Chao, LI Kun, GAO Gang, YANG Lei, XU Liangge, HAO Gang, ZHU Jiaqi. Atomic Layer Deposition and Its Impact on Transparent Conductive Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1052-1066. |
| [4] | WANG Xinyue, ZHANG Zhaocheng, LI Zhijie, HE Wanting, WEN Jinxiu, LUO Jianyi, TANG Xiufeng, WANG Yi. Effects of the Substrate Heating Temperature on Properties of ITO Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 858-865. |
| [5] | CHEN Zhen-ying;HUANG Wen-hua;LI Li-xia;HUANG Yu-yang;DENG Wen. Influence of Sputtering Pressure on the Microstructure and Optoelectronic Properties of the Ti-doped Zinc Oxide(TZO) Nano-films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(12): 3565-3570. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS