[1] JUNG H S, PARK N G. Perovskite solar cells: from materials to devices[J]. Small, 2015, 11(1): 10-25. [2] PARK N G. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials Today, 2015, 18(2): 65-72. [3] WANG D, WRIGHT M, ELUMALAI N K, et al. Stability of perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 147: 255-275. [4] LAL N N, DKHISSI Y, LI W, et al. Perovskite tandem solar cells [J]. Advanced Energy Materials, 2017, 7(18): 1602761. [5] KIM J Y, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 2020, 120(15): 7867-7918. [6] SUN J K, HUANG S, LIU X Z, et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires[J]. Journal of the American Chemical Society, 2018, 140(37): 11705-11715. [7] ZHU W D, ZHANG Q N, CHEN D Z, et al. Intermolecular exchange boosts efficiency of air-stable, carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells to over 9%[J]. Advanced Energy Materials, 2018, 8(30): 1802080. [8] LIU X Y, TAN X H, LIU Z Y, et al. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering[J]. Nano Energy, 2019, 56: 184-195. [9] CHEN Z Y, YANG M, LI R, et al. Double-side interface engineering synergistically boosts the efficiency of inorganic CsPbIBr2 perovskite solar cells over 12%[J]. Advanced Optical Materials, 2022, 10(18): 2200802. [10] WANG H X, YANG M, CAI W S, et al. Suppressing phase segregation in CsPbIBr2 films via anchoring halide ions toward underwater solar cells[J]. Nano Letters, 2023, 23(10): 4479-4486. [11] QIU J M, MEI X Y, ZHANG M X, et al. Dipolar chemical bridge induced CsPbI3 perovskite solar cells with 21.86% efficiency[J]. Angewandte Chemie (International Ed), 2024, 63(18): e202401751. [12] FAN W L, DENG K M, SHEN Y, et al. Moisture-accelerated precursor crystallisation in ambient air for high-performance perovskite solar cells toward mass production[J]. Angewandte Chemie (International Ed), 2022, 61(42): e202211259. [13] GUO Q Y, DUAN J L, ZHANG J S, et al. Universal dynamic liquid interface for healing perovskite solar cells[J]. Advanced Materials, 2022, 34(26): e2202301. [14] PENG J, KREMER F, WALTER D, et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 percent[J]. Nature, 2022, 601(7894): 573-578. [15] SUN T J, NIAN Q S, REN X D, et al. Hydrogen-bond chemistry in rechargeable batteries[J]. Joule, 2023, 7(12): 2700-2731. [16] ZHANG K, WANG Z, WANG G P, et al. A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity[J]. Nature Communications, 2020, 11(1): 1006. [17] MUJAHID M, AL-HARTOMY O A. Fabrication and synthesis of dye-sensitized solar cells (DSSC) using Pd doped ZnO photoanodes and extract of plant leaves as a natural dye[J]. Materials Research Innovations, 2023, 27(3): 194-203. [18] MA M, XUE Q Z, CHEN H J, et al. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2/Si[J]. Applied Physics Letters, 2010, 97(6): 061902. [19] TANG W C, XU Z Y, JI P Q, et al. Metal element doping in Cs(Pb1-xDEx)Br3 for solar cell materials[J]. Chemical Engineering Journal Advances, 2022, 12: 100364. [20] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. [21] SHEN Y B, YAMAZAKI T, LIU Z F, et al. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires[J]. Sensors and Actuators B: Chemical, 2009, 135(2): 524-529. [22] GUO Y, ZHANG R, ZHANG S C, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries[J]. Energy & Environmental Science, 2021, 14(7): 3938-3944. [23] RAY A, DE TRIZIO L, ZITO J, et al. Light emission from low-dimensional Pb-free perovskite-related metal halide nanocrystals[J]. Advanced Optical Materials, 2023, 11(4): 2202005. [24] ZOU S H, LIU Y S, LI J H, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 139(33): 11443-11450. [25] CHANG Z Y, CAO X H, CHANG J. Effects of palladium doping on structural, mechanical, and opto-electronic behavior of Cs2Pt1-xPdxBr6 double perovskites[J]. Journal of Solid State Chemistry, 2024, 337: 124828. [26] GUO Z F, CHENG Z H, XING H M, et al. CsPbX3 nanocrystal incorporating transition metal cocatalyst for photocatalytic organic transformation by single electron transfer[J]. Applied Organometallic Chemistry, 2024: e7816. [27] ORIO M, PANTAZIS D A, NEESE F J P R. Density functional theory[J]. Photosynth Res, 2009, 102: 443-53. [28] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [29] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [30] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J]. Nano Letters, 2015, 15(8): 5635-5640. [31] BATRA R, PILANIA G, UBERUAGA B P, et al. Multifidelity information fusion with machine learning: a case study of dopant formation energies in hafnia[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 24906-24918. [32] BECHTEL J S, VAN DER VEN A. Octahedral tilting instabilities in inorganic halide perovskites[J]. Physical Review Materials, 2018, 2(2): 025401. [33] ZHAO D, LIU H, LU P C, et al. DFT study of the catalytic effect of Fe on the gasification of char-CO2[J]. Fuel, 2021, 292: 120203. [34] MONTECUCCO R, QUADRIVI E, PO R, et al. All-inorganic cesium-based hybrid perovskites for efficient and stable solar cells and modules[J]. Advanced Energy Materials, 2021, 11(23): 2100672. [35] TAKAGAHARA T, TAKEDA K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials[J]. Physical Review B, 1992, 46(23): 15578-15581. [36] ZHU S J, SONG Y B, WANG J, et al. Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state[J]. Nano Today, 2017, 13: 10-14. [37] BORRELLI N F, HALL D W, HOLLAND H J, et al. Quantum confinement effects of semiconducting microcrystallites in glass[J]. Journal of Applied Physics, 1987, 61(12): 5399-5409. [38] LIU S C, LI Z B, YANG Y S, et al. Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells[J]. Journal of the American Chemical Society, 2019, 141(45): 18075-18082. [39] RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235. [40] CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744. [41] ALEXANDER S, ORBACH R. Density of states on fractals: fractons[J]. Journal de Physique Lettres, 1982, 43(17): 625-631. [42] SONG Z Y, LI Y Y, DUAN W C, et al. Decisive role of electronic structure in electroanalysis for sensing materials: insights from density functional theory[J]. TrAC Trends in Analytical Chemistry, 2023, 160: 116977. [43] HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8: 489-494. [44] MUSTAFA G H, MINHAS N, SINGH H, et al. Lattice softness regulates recombination and lifetime of carrier in germanium doped CsPbI2Br perovskite: first principles DFT and NAMD simulations[J]. Journal of Solid State Chemistry, 2023, 322: 123981. [45] PEARTON S J, ABERNATHY C R, NORTON D P, et al. Advances in wide bandgap materials for semiconductor spintronics[J]. Materials Science and Engineering: R: Reports, 2003, 40(4): 137-168. [46] KULBAK M, CAHEN D, HODES G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. The Journal of Physical Chemistry Letters, 2015, 6(13): 2452-2456. [47] LIN Z N, ZHANG Y, GAO M Y, et al. Kinetics of moisture-induced phase transformation in inorganic halide perovskite[J]. Matter, 2021, 4(7): 2392-2402. |