JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (10): 1813-1829.
Special Issue: 辐射探测晶体
• Reviews • Previous Articles Next Articles
WU Rui1, FAN Donghai1, KANG Yang1, WAN Xin1, GUO Chen1, WEI Dengke1, CHEN Donglei2, WANG Tao1,3, ZHA Gangqiang1,3
Received:
2021-08-13
Online:
2021-10-15
Published:
2021-11-24
CLC Number:
WU Rui, FAN Donghai, KANG Yang, WAN Xin, GUO Chen, WEI Dengke, CHEN Donglei, WANG Tao, ZHA Gangqiang. Research Progress on Semiconductor Materials and Devices for Radiation Detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1813-1829.
[1] SIMON R C, JAMES A S, MICHAEL E P. Physics in nuclear medicine: Chapter 6 interaction of radiation with matter[M]. 2th ed. Amsterdam: Saunders, 2012: 63-85. [2] JEN C K. On the induced current and energy balance in electronics[J]. Proceedings of the IRE, 1941, 29(6): 345-349. [3] CAVALLERI G, GATTI E, FABRI G, et al. Extension of Ramo’s theorem as applied to induced charge in semiconductor detectors[J]. Nuclear Instruments and Methods, 1971, 92(1): 137-140. [4] 汤 彬,葛良全,方 方,等.核辐射测量原理[M].第一版.哈尔滨:哈尔滨工程大学出版社,2011. TANG B, GE L Q, FANG F, et al. Principle of nuclear radiation measurement [M]. 1st ed. Harbin: Harbin Engineering University Press, 2011(in Chinese). [5] HALL R N, SOLTYS T J. High purity germanium for detector fabrication[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 160-165. [6] 岳 骞.高纯锗探测器在粒子物理与天体物理中的应用[J].中国科学:物理学 力学 天文学,2011,41(12):1434-1440. YUE Q. The application of high purity germanium detector in particle and astroparticle physics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 41(12): 1434-1440(in Chinese). [7] ARMENGAUD E, AUGIER C, et al. Final results of the EDELWEISS-Ⅱ WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes[J]. Physics Letters B, 2011, 702(5): 329-335. [8] EBERTH J, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337. [9] KEMMER J. Improvement of detector fabrication by the planar process[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1984, 226(1): 89-93. [10] KEMMER J, BURGER P, HENCK R, et al. Performance and applications of passivated ion-implanted silicon detectors[J]. IEEE Transactions on Nuclear Science, 1982, 29(1): 733-737. [11] LUKE P N, GOULDING F S, MADDEN N W, et al. Low capacitance large volume shaped-field germanium detector[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 926-930. [12] AKIMOV Y K. Silicon radiation detectors (Review)[J]. Instruments and Experimental Techniques, 2007, 50(1): 1-28. [13] PARKER S I, KENNEY C J, SEGAL J. 3D: A proposed new architecture for solid-state radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(3): 328-343. [14] DAVIA C, HASI J, KENNEY C, et al. 3D silicon detectors: status and applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 549(1/2/3): 122-125. [15] LI Z. Novel silicon stripixel detector: concept, simulation, design, and fabrication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518(3): 738-753. [16] CHEN J W, DING H, LI Z, et al. 3D simulations of device performance for 3D-Trench electrode detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 796: 34-37. [17] KENNEY C J, PARKER S, WALCKIERS E. Results from 3-D silicon sensors with wall electrodes: near-cell-edge sensitivity measurements as a preview of active-edge sensors[J]. IEEE Transactions on Nuclear Science, 2001, 48(6): 2405-2410. [18] LIU X J, BORNEFALK H, CHEN H, et al. A silicon-strip detector for photon-counting spectral CT: energy resolution from 40 keV to 120 keV[J]. IEEE Transactions on Nuclear Science, 2014, 61(3): 1099-1105. [19] TINDALL C, HAU I D, LUKE P N. Evaluation of Si(Li) detectors for use in Compton telescopes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1/2): 130-135. [20] WILLIAMS T, MARTENS A, CASSOU K, et al. Novel applications and future perspectives of a fast diamond gamma ray detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 845: 199-202. [21] EBERHARDT J E, RYAN R D, TAVENDALE A J. High-resolution nuclear radiation detectors from epitaxial n-GaAs[J]. Applied Physics Letters, 1970, 17(10): 427-429. [22] KOBAYASHI T, KURU I, HOJO A, et al. Fe-doped high purity GaAs as a room temperature gamma-ray spectrometric detector[J]. IEEE Transactions on Nuclear Science, 1976, 23(1): 97-101. [23] BENZ K W, IRSIGLER R, LUDWIG J, et al. X-ray detectors based on semi-insulating GaAs substrate[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 322(3): 493-498. [24] BAVDAZ M, PEACOCK A, OWENS A. Future space applications of compound semiconductor X-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1/2): 123-131. [25] LIOLIOU G, BARNETT A M. Prototype GaAs X-ray detector and preamplifier electronics for a deep seabed mineral XRF spectrometer[J]. X-Ray Spectrometry, 2018, 47(3): 201-214. [26] AMENDOLIA S R, ANNOVAZZI A, BIGONGIARI A, et al. A prototype for a mammographic head and related developments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518(1/2): 382-385. [27] KANIA D R, LANE S, JONES B, et al. High speed detection of thermonuclear neutrons with solid state detectors[J]. IEEE Transactions on Nuclear Science, 1988, 35(1): 387-388. [28] MCGREGOR D S, HAMMIG M D, YANG Y H, et al. Design considerations for thin film coated semiconductor thermal neutron detectors—I: basics regarding alpha particle emitting neutron reactive films[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 500(1/2/3): 272-308. [29] BELL S L, SEN S. Crystal growth of Cd1-xZnxTe and its use as a superior substrate for LPE growth of Hg0.8Cd0.2Te[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1985, 3(1): 112-115. [30] DOTY F P. Properties of CdZnTe crystals grown by a high pressure Bridgman method[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1992, 10(4): 1418. [31] BARBER H B, BARRETT H H, DERENIAK E L, et al. A gamma-ray imager with multiplexer readout for use in ultra-high-resolution brain SPECT[J]. IEEE Transactions on Nuclear Science, 1993, 40(4): 1140-1144. [32] ROGULSKI M M, BARBER H B, BARRETT H H, et al. Ultra-high-resolution brain SPECT imaging: simulation results[J]. IEEE Conference on Nuclear Science Symposium and Medical Imaging, 1992: 1071-1073 vol.2. [33] HAMILTON W J, RHIGER D R, SEN S, et al. Very high resolution detection of gamma radiation at room-temperature using p-i-n detectors of CdZnTe and HgCdTe[J]. IEEE Transactions on Nuclear Science, 1994, 41(4): 989-992. [34] HAMILTON W J, RHIGER D R, SEN S, et al. HgCdTe/CdZnTe P-I-N high-energy photon detectors[J]. Journal of Electronic Materials, 1996, 25(8): 1286-1292. [35] 杨 帆,王 涛,周伯儒,等.室温核辐射探测器用碲锌镉晶体生长研究进展[J].人工晶体学报,2020,49(4):561-569. YANG F, WANG T, ZHOU B R, et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications[J]. Journal of Synthetic Crystals, 2020, 49(4): 561-569(in Chinese). [36] WU S H, ZHA G Q, CAO K, et al. The growth of CdZnTe epitaxial thick film by close spaced sublimation for radiation detector[J]. Vacuum, 2019, 168: 108852. [37] ZHA G Q, LIN Y, ZENG D M, et al. Resistive switching properties in CdZnTe films[J]. Applied Physics Letters, 2015, 106(6): 062103. [38] ZHA G Q, YANG J, XU L Y, et al. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe[J]. Journal of Applied Physics, 2014, 115(4): 043715. [39] XU L Y, WANG J Y, DONG J P, et al. Improvement of surface defects in CdZnTe crystals by rapid thermal annealing[J]. Journal of Electronic Materials, 2020, 49(8): 4563-4568. [40] XU L Y, JIE W Q. Deep-level defect effects on the low-temperature photoexcitation process in CdZnTe crystals[J]. Journal of Electronic Materials, 2020, 49(1): 429-434. [41] 谷亚旭.CdZnTe核辐射探测器性能不均匀性研究[D].西安:西北工业大学,2017. GU Y X. Performance non-uniformity of CdZnTe nuclear radiation detectors[D]. Xi'an: Northwestern Polytechnical University, 2017(in Chinese). [42] 查钢强,王 涛,徐亚东,等.新型CZT半导体X射线和γ射线探测器研制与应用展望[J].物理,2013,42(12):862-869. ZHA G Q, WANG T, XU Y D, et al. The development of CZT semiconductor X-ray and γ-ray detectors[J]. Physics, 2013, 42(12): 862-869(in Chinese). [43] 王 涛,徐亚东,查钢强,等.室温辐射探测器用CdZnTe晶体生长及其器件制备[J].机械科学与技术,2010,29(4):546-550. WANG T, XU Y D, ZHA G Q, et al. Detector grade CdZnTe crystal growth and device fabrication[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(4): 546-550(in Chinese). [44] DOTY F P, BARBER H B, AUGUSTINE F L, et al. Pixellated CdZnTe detector arrays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 353(1/2/3): 356-360. [45] HE Z, KNOLL G F, WEHE D K, et al. Coplanar grid patterns and their effect on energy resolution of CdZnTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 411(1): 107-113. [46] MONTEMONT G, ARQUES M, VERGER L, et al. A capacitive Frisch grid structure for CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(3): 278-281. [47] ERLANDSSON K, HOWELL E, ROTH N, et al. Assessing possible use of CZT technology for application to brain SPECT[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 3354-3358. [48] LIU C, CHAN C, HARRIS M, et al. Respiratory gating for a stationary dedicated cardiac SPECT system[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 2898-2901. [49] 尹永智.基于350微米像素阳极碲锌镉探测器的500微米分辨率的正电子发射断层显像研究[D].兰州:兰州大学,2012. YIN Y Z. Investigation of sub-500 μm PET image based on350 μm pitch pixelated CdZnTe detectors[D]. Lanzhou: Lanzhou University, 2012(in Chinese). [50] BARBER W C, WESSEL J C, NYGARD E, et al. High flux energy-resolved photon-counting X-ray imaging arrays with CdTe and CdZnTe for clinical CT[C]//2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). June 23-27, 2013, Marseille, France. IEEE, 2013: 1-5. [51] MATSUURA D, GENBA K, KURODA Y, et al. “ASTROCAM 7000HS” radioactive substance visualization camera[EB/OL]. 2014 [52] MCCLESKEY M, KAYE W, MACKIN D S, et al. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 785: 163-169. [53] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902. [54] KASAP S O, ROWLANDS J A. Review X-ray photoconductors and stabilized a-Se for direct conversion digital flat-panel X-ray image-detectors[J]. Journal of Materials Science: Materials in Electronics, 2000, 11(3): 179-198. [55] KASAP S, FREY J B, BELEV G, et al. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes[J]. Physica Status Solidi (b), 2009, 246(8): 1794-1805. [56] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617. [57] QUE W, ROWLANDS J A. X-ray imaging using amorphous selenium: inherent spatial resolution[J]. Medical Physics, 1995, 22(4): 365-374. [58] YUAN Y B, CHAE J, SHAO Y C, et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells[J]. Advanced Energy Materials, 2015, 5(15): 1500615. [59] CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93. [60] 许 平.CVD金刚石膜辐射探测器的研制与性能研究[D].衡阳:南华大学,2020. XU P. Development and performance of CVD diamond film radiation detectors[D]. Hengyang: University of South China, 2020(in Chinese). [61] FRANKLIN M, FRY A, GAN K K, et al. Development of diamond radiation detectors for SSC and LHC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 315(1/2/3): 39-42. [62] HIBINO K, KASHIWAGI T, OKUNO S, et al. The design of diamond Compton telescope[J]. Astrophysics and Space Science, 2007, 309(1/2/3/4): 541-544. [63] LECHNER P, HARTMANN R, SOLTAU H, et al. Pair creation energy and Fano factor of silicon in the energy range of soft X-rays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 377(2/3): 206-208. [64] TORRISI L, SCIUTO A, CANNAVÒ A, et al. SiC detector for sub-MeV alpha spectrometry[J]. Journal of Electronic Materials, 2017, 46(7): 4242-4249. [65] ROGALLA M, RUNGE K, SÖLDNER-REMBOLD A. Particle detectors based on semi-insulating silicon carbide[J]. Nuclear Physics B-Proceedings Supplements, 1999, 78(1/2/3): 516-520. [66] EBERTH J, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337. [67] ALEXIEV D, REINHARD M I, MO L, et al. Review of Ge detectors for gamma spectroscopy[J]. Australasian Physics & Engineering Sciences in Medicine, 2002, 25(3): 102-109. [68] SOLTANI A, BARKAD H A, MATTALAH M, et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors[J]. Applied Physics Letters, 2008, 92(5): 053501. [69] LI J, MAJETY S, DAHAL R, et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers[J]. Applied Physics Letters, 2012, 101(17): 171112. [70] MAITY A, GRENADIER S J, LI J, et al. High sensitivity hexagonal boron nitride lateral neutron detectors[J]. Applied Physics Letters, 2019, 114(22): 222102. [71] ZHIGAL’SKII G P, KHOLOMINA T A. Excess noise and deep levels in GaAs detectors of nuclear particles and ionizing radiation[J]. Journal of Communications Technology and Electronics, 2015, 60(6): 517-542. [72] ALEXIEV D, BUTCHER K S A. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 317(1/2): 111-115. [73] KHLUDKOV S S. Diffusion of impurities in GaAs, diffusion structures and devices[J]. Tomsk State University Journal, 2005, (285): 84-94. [74] KANNO I, HISHIKI S, SUGIURA O, et al. InSb cryogenic radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568(1): 416-420. [75] FUNAKI M, OZAKI T, SATOH K, et al. Growth and characterization of CdTe single crystals for radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1/2): 120-126. [76] SELLIN P J, DAVIES A W, BOROUMAND F, et al. IBIC characterization of charge transport in CdTe∶Cl[J]. Semiconductors, 2007, 41(4): 395-401. [77] YÜCEL H, BIRGÜL Ö, UYAR E, et al. A novel approach in voltage transient technique for the measurement of electron mobility and mobility-lifetime product in CdZnTe detectors[J]. Nuclear Engineering and Technology, 2019, 51(3): 731-737. [78] SZELES C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1242-1249. [79] RAFIEI R, BOARDMAN D, SARBUTT A, et al. Investigation of the charge collection efficiency of CdMnTe radiation detectors[J]. IEEE Transactions on Nuclear Science, 2012, 59(3): 634-641. [80] HOSSAIN A, CUI Y, BOLOTNIKOV A E, et al. Vanadium-doped cadmium manganese telluride (Cd1-xMnxTe) crystals as X- and gamma-ray detectors[J]. Journal of Electronic Materials, 2009, 38(8): 1593-1599. [81] MYCIELSKI A, BURGER A, SOWINSKA M, et al. Is the (Cd, Mn)Te crystal a prospective material for X-ray and γ-ray detectors?[J]. Physica Status Solidi (c), 2005, 2(5): 1578-1585. [82] KABIR M Z, HIJAZI N. Temperature and field dependent effective hole mobility and impact ionization at extremely high fields in amorphous selenium[J]. Applied Physics Letters, 2014, 104(19): 192103. [83] BACIAK J E, HE Z. Long-term stability of 1-cm thick pixelated HgI2 gamma-ray spectrometers operating at room temperature[J]. IEEE Transactions on Nuclear Science, 2004, 51(4): 1886-1894. [84] BURGER A, NASON D, FRANKS L. Mercuric iodide in prospective[J]. Journal of Crystal Growth, 2013, 379: 3-6. [85] BEYERLE A, HULL K, MARKAKIS J, et al. Gamma-ray spectrometry with thick mercuric iodide detectors[J]. Nuclear Instruments and Methods in Physics Research, 1983, 213(1): 107-113. [86] LIU J, ZHANG Y. Growth of lead iodide single crystals used for nuclear radiation detection of Gamma-rays[J]. Crystal Research and Technology, 2017, 52(3): 1600370. [87] MANFREDOTTI C, MURRI R, QUIRINI A, et al. PbI2 as nuclear particle detector[J]. IEEE Transactions on Nuclear Science, 1977, 24(1): 126-128. [88] LINTEREUR A T, QIU W, NINO J C, et al. Iodine based compound semiconductors for room temperature gamma-ray spectroscopy[C]//SPIE Defense and Security Symposium. Proc SPIE 6945, Optics and Photonics in Global Homeland Security Ⅳ, Orlando, Florida, USA. 2008, 6945: 694503. [89] NASON D, KELLER L. The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport[J]. Journal of Crystal Growth, 1995, 156(3): 221-226. [90] JELLISON G E, RAMEY J O, BOATNER L A. Optical functions of BiI3 as measured by generalized ellipsometry[J]. Physical Review B, 1999, 59(15): 9718-9721. [91] HITOMI K, SHOJI T, ISHII K. Advances in TlBr detector development[J]. Journal of Crystal Growth, 2013, 379: 93-98. [92] SHOROHOV M, KOUZNETSOV M, LISITSKIY I, et al. Recent results in TlBr detector crystals performance[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1855-1858. [93] KIM H, CIRIGNANO L, CHURILOV A, et al. Developing larger TlBr detector: detector performance[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 819-823. |
[1] | CHEN Fengwu, LYU Wenli, GONG Xin, XUE Yong, GONG Xiaoliang. Progress and Prospect of Molecular Beam Epitaxy Equipment at Home and Abroad [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1494-1503. |
[2] | LEI Shasha, GONG Qiaorui, ZHAO Chengchun, SUN Xiaohui, HANG Yin. Research Progress of Wide Bandgap Semiconductor ZnGa2O4 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1289-1301. |
[3] | NI Haoran, CHEN Ya, WANG Liguang, RUI Yang, ZHAO Zehui, MA Cheng, LIU Jie, ZHANG Xingmao, ZHAO Yanxiang, YANG Shaolin. Numerical Simulation of the Effect of Heat Shield Structure on Temperature Distribution in Growing 300 mm Semiconductor Grade Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1196-1211. |
[4] | DING Tao, LI Qingwen, XU Yuqi, ZHONG Min. Research Progress and Prospect of Chalcogenide Perovskite of BaZrS3 and Its Preparation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 922-929. |
[5] | LI Ganggui, HUANG Danyang, ZHAO Xiaolong, CAI Yahui, HE Yongning. Study on the Process of Preparing ZnO Thick Film by Electrochemical Deposition Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1069-1077. |
[6] | GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge. Research Progress on the Growth of Silicon Carbide Single Crystal via Top-Seeded Solution Growth Method and Its Key Issues [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 741-759. |
[7] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[8] | XU Yuqi, LI Qingwen, ZHONG Min. Preparation of BiOI Films with High c-axis Orientation by Chemical Vapor Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 841-847. |
[9] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
[10] | ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran. Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 572-584. |
[11] | LU Xuesong, WANG Wantang, WANG Rong, YANG Deren, PI Xiaodong. Wet Oxidation of Semiconducting Silicon Carbide Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 181-193. |
[12] | LI Yang, CAO Kun, JIE Wanqi. Effect of Thermal Treated GaSb Substrate for Epitaxial Growth of CdZnTe Film by Close-Spaced Sublimation Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1705-1711. |
[13] | LIU Jingming, YANG Jun, ZHAO Youwen, YANG Cheng'ao, JIANG Dongwei, NIU Zhichuan. Research Progress of GaSb Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 1-11. |
[14] | MA Yulin, GUO Xiang, DING Zhao. Research Progress on the Preparation and Application of GaAsBi Semiconductor Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 25-37. |
[15] | XU Zheren, ZHANG Jijun, CAO Xiangzhi, LU Wei, LIU Hao, QI Yongwu. Study on Thermal Field of Growth System of CdZnTe Crystal Growth by Traveling Heater Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1589-1598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||